Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Revealing of Potential Plant Growth-Enhancing Traits Through In Silico Genomic Analysis of Bacillus Rhizoplanae CIP111899

(Guendouz Dif and Abdelghani Zitouni)

Abstract

The objective of this study was to examine the whole genome of the bacterial strain CIP111899, isolated from the root surface of maize (Zea mays), in order to reveal the presence of genes implicated in enhancing plant growth. The genome-based taxonomy revealed that strain CIP111899 belongs to a new species called Bacillus rhizoplanae. In the second step, the genome of CIP111899 was analyzed on multiple levels using various information tools. This involved examining functional categories associated with genes using analytical techniques, namely, annotation using the RAST server, then identifying growth-promoting genes with the Prokka program, and finally detecting groups of genes responsible for secondary metabolism through antiSMASH analysis. The results of the genomic analysis of strain CIP111899 showed the presence of multiple genes that enhance stress tolerance, such as those encoding enzymes and antioxidants (superoxide dismutase, peroxidases, and catalase). Additionally, various plant growth-promoting genes were identified, including those involved in the solubility of inorganic phosphorus, phytohormone production, and iron uptake. In conclusion, strain CIP111899 has shown promise as a potential agent for promoting plant growth and thereby improving food security due to its genetic composition.
PDF

References

Alexandratos, N. and Bruinsma, J. (2012). World Agriculture towards 2030/2050: The 2012 Revision. Available at:  https://ageconsearch.umn.edu/record/288998/files/a-ap106e.pdf?ln=en&withWatermark=1 (accessed on 10/10/2022).
Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. (2008). The rast server: Rapid annotations using subsystems technology. BMC Genomics, 9(1), 1–15. DOI:10.1186/1471-2164-9-75 
Balderas-Ruiz, K.A., Bustos, P., Santamaria, R.I., Gonzalez, V., Cristiano-Fajardo, S.A., Barrera-Ortiz, S., Mezo-Villalobos, M., Aranda-Ocampo, S., Guevara-Garcia, A.A., Galindo, E. and Serrano-Carreon, L. (2020). Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. Amb Express, 10(1), 1–19. DOI:10.1186/s13568-020-01101-8
Chandran, H., Meena, M. and Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13(19), 10986. DOI:10.3390/su131910986
Dif, G., Belaouni, H.A., Goudjal, Y., Yekkour, A., Djemouai, N. and Zitouni, A. (2021). Potential for plant growth promotion of Kocuria arsenatis strain st19 on tomato under salt stress conditions. South African Journal of Botany, 138(n/a), 94–104. DOI:10.1016/j.sajb.2020.12.014
Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J. and Laviolette, F. (2019). Interpretable genotype-to-phenotype classifiers with performance guarantees. Scientific Reports, 9(1), 1–13. DOI:10.1038/s41598-019-40561-2
Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., Chebotar, V., Tikhonovich, I., Kamilova, F., Validov, S.Z. and Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 47(2), 197–205. DOI:10.1007/s00374-010-0523-3
Fitriatin, B.N. and Nurmala, D. (2019). In vitro test for compatibility of biofertilizers containing phosphate solubilizers and nitrogen-fixing bacteria. In: IOP Conference Series: Earth and Environmental Science, Bandung, West Java, Indonesia, 05–07/08/2019. DOI:10.1088/1755-1315/393/1/012049
Gouel, C. and Guimbard, H. (2017). La demande alimentaire mondiale en 2050 ‘World food demand in 2050’. La Lettre Du CEPII, n/a(377), 1–4.
Gupta, A., Meyer, J.M. and Goel, R. (2002). Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Current Microbiology, 45(5), 323–7. DOI:10.1007/s00284-002-3762-1
Hider, R.C. and Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637–57. DOI:10.1039/B906679A
Hill, K., Porco, S., Lobet, G., Zappala, S., Mooney, S., Draye, X. and Bennett, M. J. (2013). Root systems biology: integrative modeling across scales, from gene regulatory networks to the rhizosphere. Plant Physiology, 163(4), 1487–503. DOI:10.1104/pp.113.227215
Kämpfer, P., Lipski, A., McInroy, J.A., Clermont, D., Criscuolo, A. and Glaeser, S.P. (2022). Bacillus rhizoplanae sp. nov. from maize roots. International Journal of Systematic and Evolutionary Microbiology, 72(7), 005450. DOI:10.1099/ijsem.0.005450
Khamna, S., Yokota, A. and Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25(4), 649–55. DOI:10.1007/s11274-008-9933-x
Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286(5776), 885–6. DOI:10.1038/286885a0
Kumar, A., Pathak, R.K., Gupta, S.M., Gaur, V.S. and Pandey, D. (2015). Systems biology for smart crops and agricultural innovation: Filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. OMICS: A Journal of Integrative Biology, 19(10), 581–601. DOI:10.1089/omi.2015.0106
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–9. DOI:10.1093/molbev/msy096
Meier-Kolthoff, J.P. and Goker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), 2182.
Ojuederie, O.B. and Babalola, O.O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1504. DOI:10.3390/ijerph14121504
Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A. and Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3. DOI:10.1093/bioinformatics/btv421
Pereira-Gomez, M., Rios, C., Zabaleta, M., Lagurara, P., Galvalisi, U., Iccardi, P., Azziz, G., Battistoni, F., Platero, R. and Fabiano, E. (2020). Native legumes of the farrapos protected area in Uruguay establish selective associations with rhizobia in their natural habitat. Soil Biology and Biochemistry, 148(n/a), 107854.‏ DOI:10.1016/j.soilbio.2020.107854
Prasad, R., Kumar, M. and Varma, A. (2015). Role of PGPR in soil fertility and plant health. Plant-growth-promoting Rhizobacteria (PGPR) and Medicinal Plants, n/a(n/a). 247–60. DOI:10.1007/978-3-319-13401-7_12
Ruanpanun, P., Tangchitsomkid, N., Hyde, K.D. and Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 26(n/a). 1569–78. DOI:10.1007/s11274-010-0332-8
Sadeghi, A., Karimi, E., Dahaji, P.A., Javid, M.G., Dalvand, Y. and Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28(4), 1503–9. DOI:10.1007/s11274-011-0952-7
Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. DOI:10.1093/bioinformatics/btu153
Seneviratne, G., Weerasekara, M.L.M.A.W., Seneviratne, K.A.C.N., Zavahir, J.S., Kecskés, M.L. and Kennedy, I.R. (2011). Importance of biofilm formation in plant growth promoting rhizobacterial action. Plant Growth and Health Promoting Bacteria, n/a(n/a). 81–95. DOI:10.1007/978-3-642-13612-2_4
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(n/a), 1–14. DOI:10.1186/2193-1801-2-587
Tank, N. and Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions. 5(1), 51–8. DOI:10.1080/17429140903125848
Teixeira, G. M., Mosela, M., Nicoletto, M. L. A., Ribeiro, R. A., Hungria, M., Youssef, K., Higashi, A.Y., Mian, S., Ferreira, A.S., Goncalves, L.S.A., Pereira, U.P. and de Oliveira, A.G. (2021). Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490. Frontiers in Microbiology, 11(n/a), 618415. DOI:10.3389/fmicb.2020.618415
Thakker, J.N., Patel, S. and Dhandhukia, P.C. (2013). Induction of defense-related enzymes in banana plants: Effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. International Scholarly Research Notices, 2013(n/a), 1–6. DOI:10.5402/2013/601303
Thakur, N. (2018). In silico modulation techniques for upgrading sustainability and competitiveness in agri-food sector. In: D.K. Choudhary, M. Kumar, R. Prasad and V. Kumar (Eds.). In Silico Approach for Sustainable Agriculture. Singapore: Springer. DOI:10.1007/978-981-13-0347-0
Tiwari, S., Prasad, V. and Lata, C. (2019). Bacillus: Plant growth promoting bacteria for sustainable agriculture and environment. New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 2019(n/a), 43–55. DOI:10.1016/B978-0-444-64191-5.00003-1
Toumatia, O., Compant, S., Yekkour, A., Goudjal, Y., Sabaou, N., Mathieu, F., Sessitsch, A. and Zitouni, A. (2016). Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. South African Journal of Botany, 105(n/a), 234–9. DOI:10.1016/j.sajb.2016.03.020
Vincent, A.T., Derome, N., Boyle, B., Culley, A.I. and Charette, S.J. (2017). Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of Microbiological Methods, 138(n/a), 60–71. DOI:10.1016/j.mimet.2016.02.016
Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G. and Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3), 1231. DOI:10.3390/ijerph14121504
Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H.U., Bruccoleri, R., Lee, S.Y., Fischbach, M.A., Müller, R., Wohlleben, W., Breitling, R., Takano, E. and Medema, M.H. (2015). ANTISMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43(1), 237–43. DOI:10.1093/nar/gkv437
Wildermuth, M.C., Dewdney, J., Wu, G. and Ausubel, F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562–5. DOI:10.1038/35107108
Wu, X., Wu, H., Wang, R., Wang, Z., Zhang, Y., Gu, Q., Farzand, A., Yang, X., Semenov, M., Borriss, R., Xie, Y. and Gao, X. (2021). Genomic features and molecular function of a novel stress-tolerant Bacillus halotolerans strain isolated from an extreme environment. Biology, 10(10), 1030. DOI:10.3390/biology10101030
Xiong, Q., Liu, D., Zhang, H., Dong, X., Zhang, G., Liu, Y. and Zhang, R. (2020). Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Applied Microbiology and Biotechnology, 104(n/a), 7177–85. DOI:10.1007/s00253-020-10713-w
Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q. and Zhang, R. (2019). Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Applied and Environmental Microbiology, 85(5), 2116–18. DOI:10.1128/AEM.02116-18