Scientific Journal Of King Faisal University: Basic and Applied Sciences
Scientific Journal of King Faisal University: Basic and Applied Science
The Effectiveness of Nanocomposite Films Against Gram-Positive and Gram-Negative Foodborne Pathogenic Bacteria
(Khaled Saif-Aldin , Sahar Al-Hariri , Adnan Ali-Nizam and Obaida Alhajali)Abstract
In this research, nanocomposites consisting of a mixture of linear low-density polyethylene polymer (LLDPE) and zinc oxide nanoparticles (ZnO-NPs) were prepared. The films of the composite material were formed with five weight ratios (0.25, 0.5, 1, 2.5, and 5wt%) in addition to pure LLDPE, intended to investigate the role of nanomaterials in improving the performance of some properties of LLDPE polymer such as increasing the shelf life of food products and protecting the consumer from pathogenic germs in food packaging applications. The efficacy was evaluated against pathogenic bacteria, Escherichia coli and Staphylococcus aureus, through the standard "ISO 22196". The test results confirm that the nanocomposite films containing 0.5wt% or more of nano-zinc oxide have bacteriostatic activity. This activity increases with the increase of ZnO-NPs in the LLDPE polymeric phase, and the highest antibacterial effect was in the nanocomposite films of 5wt%. It was found that gram-positive bacteria were more sensitive to ZnO-NPs than gram-negative bacteria and that these nanocomposite films can provide a safe way to preserve food without the need for food processing.
KEYWORDS
Nanocomposite films, zinc oxide nanoparticles, anti-microbial, challenge tests, food packaging
PDF
References
AATCC. (2019). Assessment of Antimicrobial Finishes on Textile Materials. North Carolina: Technical Manual Method American Association of Textile Chemists and Colorists.
Alghdeir, M., Mayya, K. and Dib, M. (2019). Characterization of nano-silica/low-density polyethylene nanocomposite materials. Journal of Nanomaterials, 2019(7),1–8. DOI: 10.1155/2019/4184351
Alhajali, O. and Adnan, A. (2021). Phytochemical Screening and Antibacterial Activity of Pistacia Atlantica and Pinus canariensis Extracts. Journal of the Turkish Chemical Society Section A: Chemistry, 8(2), 403–18. DOI: 10.18596/jotcsa.836074
Arakha, M., Saleem, M., Mallick, B.C. and Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticles. Scientific Reports, 5(1), 1–10. DOI: 10.1038/srep09578
ASTM. (2013). Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions. West Conshohocken, PA: American Society for Testing and Materials.
Bazant, P., Sedlacek, T., Kuritka, I., Podlipny, D. and Holcapkova, P. (2018). Synthesis and effect of hierarchically structured Ag-ZnO hybrid on the surface antibacterial activity of a propylene-based elastomer blends. Materials, 11(3), 363. DOI: 10.3390/ma11030363
Bisht, G. and Rayamajhi, S. (2016). ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 3(n/a), 3–9. DOI: 10.5772/63437
Campos, M.D., Zucchi, P.C., Phung, A., Leonard, S.N. and Hirsch, E.B. (2016). The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS ONE, 11(8), 1–11. DOI: 10.1371/journal.pone.0160728
Da Silva, B.L., Abuçafy, M.P., Manaia, E.B., Junior, J.A.O., Chiari-Andréo, B.G., Pietro, R.C.R. and Chiavacci, L.A. (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. International journal of nanomedicine, 14(n/a), 9395–409. DOI: 10.2147/IJN.S216204
Damian, L. and Patachia, S. (2014). Method for testing the antimicrobial character of the materials and their fitting to the scope. Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 7(2), 37.
Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O. and Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28(2), 47–56. DOI: 10.1016/j.serj.2017.10.001
EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). (2016). Safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials. EFSA Journal, 14(3),1–8 . DOI: 10.2903/j.efsa.2016.4408
Emamifar, A., Kadivar, M., Shahedi, M. and Soleimanian-Zad, S. (2010). Preparation and evaluation of nanocomposite LDPE films containing Ag and ZnO for food-packaging applications. Advanced Materials Research, 129-131(n/a) 1228–32. DOI: 10.4028/www.scientific.net/AMR.129-131.1228
Hashim, A.A. (2011). Advances in Nanocomposite Technology. Rijeka, Croatia: BoD–Books on Demand.
ISO 22196. (2011). Plastics-Measurement of Antibacterial Activity on Plastic Surfaces. 2nd Edition. London: International Organization for Standardization.
Kadiyala, U., Turali-Emre, E.S., Bahng, J.H., Kotov, N.A. and VanEpps, J.S. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927–39. DOI: 10.1039/C7NR08499D
Khezrianjoo, S., Lee, J., Kim, K.H. and Kumar, V. (2019). Eco-toxicological and kinetic evaluation of TiO2 and ZnO nanophotocatalysts in degradation of organic dye. Catalysts, 9(10), 1–20. DOI:10.3390/catal9100871
Kuorwel, K.K., Cran, M.J., Orbell, J.D., Buddhadasa, S. and Bigger, S.W. (2015). Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14(4), 411–30. DOI: 10.1111/1541-4337.12139
Lee, W. and Ko, S. (2018). A Study on the functionality and stability of LDPE-Nano ZnO composite film. Korean Journal of Packaging Science and Technology, 24(1), 27–34. DOI: 10.20909/kopast.2018.24.1.27
Li, S.C. and Li, Y.N. (2010). Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO. Journal of Applied Polymer Science, 116(5), 2965–9. DOI: 10.1002/app.31802
Mania, S., Cieślik, M., Konzorski, M., Święcikowski, P., Nelson, A., Banach, A. and Tylingo, R. (2020). The synergistic microbiological effects of industrial produced packaging polyethylene films incorporated with zinc nanoparticles. Polymers, 12(5), 1198. DOI: 10.3390/polym12051198
Orsuwan, A., Kwon, S., Bumbudsanpharoke, N. and Ko, S. (2019). Novel LDPE-riboflavin composite film with dual function of broad-spectrum light barrier and antimicrobial activity. Food Control, 100(n/a), 176–82. DOI: 10.1016/j.foodcont.2019.01.012
Rosende, M., Miró, M., Salinas, A., Palerm, A., Laso, E., Frau, J., Puig, J., Matas, J. M. and Doménech-Sánchez, A. (2020). Cost-Effectiveness analysis of chlorine-based and alternative disinfection systems for pool waters. Journal of Environmental Engineering, 146(1), 1–10. DOI: 10.1061/(ASCE)EE.1943-7870.0001610
Russell, A. D. (2003). Challenge testing: Principles and practice. International Journal of Cosmetic Science, 25(3), 147–53. DOI: 10.1046/j.1467-2494.2003.00179.x
Saif-Aldin, K., Al-Hariri, S. and Ali-Nizam, A. (2020). Effectiveness of ZnO nano particles against the foodborne microbial pathogens E.coli and S. aureus. Jordan Journal of Chemistry (JJC), 15(2), 87–94. DOI: 10.47014/15.2.4
Scuri, S., Petrelli, F., Grappasonni, I., Idemudia, L., Marchetti, F. and Di Nicola, C. (2019). Evaluation of the antimicrobial activity of novel composite plastics containing two silver (I) additives, acyl pyrazolonate and acyl pyrazolone. Acta Bio Medica: Atenei Parmensis, 90(3), 370–7 DOI: 10.23750/abm.v90i3.8561
Siddique, S., Hussain, Z., Shahid, S. and Yasmin, F. (2013). Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta chimica Slovenica, 60(3), 660–5.
Simoneau, C., Raffael, B., Garbin, S., Hoekstra, E., Mieth, A., Lopes, J.A. and Reina, V. (2016). Non-Harmonised Food Contact Materials in the EU. European Union: Regulatory and market situation. JRC Science for Policy Report. DOI: 10.2788/234276
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H.M., Ann, L.C., Bakhori, S. K.M., Hasan, H. and Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro letters, 7(3), 219–42. DOI: 10.1007/s40820-015-0040-x
Tiwari, A. (2017). Handbook of antimicrobial coatings. Manoa, USA: Elsevier.
Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C. and Freire, C.S. (2018). A concise guide to active agents for active food packaging. Trends in Food Science and Technology, 80(n/a), 212–22. DOI: 10.1016/j.tifs.2018.08.006
Wang, L., Hu, C. and Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12(n/a). 1227–1249. DOI: 10.2147/IJN.S121956
Wiegand, C., Völpel, A., Ewald, A., Remesch, M., Kuever, J., Bauer, J., Griesheim, S., Hauser, C., Thielmann, J., Tonndorf-Martini, S., Sigusch, B.W., Weisser, J., Wyrwa, R., Elsner, P., Hipler, U., Roth, M., Dewald, C., Ludecke-Beyer, C. and Bossert, J. (2018). Critical physiological factors influencing the outcome of antimicrobial testing according to ISO 22196/JIS Z 2801. PLoS ONE, 13(3), 1–15. DOI: 10.1371/journal.pone.0194339