
 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 167

On Applying an Evolutionary Engineering Method
to Evolve a Neural Net XOR System

A. Lehireche, A. Rahmoun *

Evolutionary Engineering and Distributed Information Systems Laboratory, EEDIS
Computer Science Department, University Djilali Liabès of Sidi Bel-Abbès, Algeria

* College of Planning & Management, King Faisal University
Al_Hassa Kingdom of Saudi Arabia

Abstract
Evolutionary Engineering (EE) challenge is to prove that it is possible to

build systems without going through any design process.

Evolutionary Engineering is defined to be “the art of using evolutionary
algorithms approach such as genetic algorithms to build complex systems” .

In this paper, we attempt to solve the neural net XOR problem through
using a method that relies on evolving neural structures and based on genetic
techniques. A formal EE method had been proposed in the past .

Our main purpose is to show that the EE-Method steps are highly
relevant, and that the evolving principle is effective. We had implemented
software using the EE concepts to build/evolve a neural net that solve the
XOR problem.

Results are prominent and show clearly that the proposed EE method can
be easily extended to any type of neural network.

Further works may emphasize on how this method would be effective
when size and complexity of the system to be designed (evolved) increase.

Key words: Evolutionary Engineering, Genetic Algorithms, EE-Method,
XOR problem, Neural Net, Evolve.

1. Introduction
Computer science theory is based on two major concepts: computability

and complexity. The computability concept deals with the fact that problem
solving induces the existence of algorithms. Furthermore, computer
scientists may analyse problems and need strong capabilities to design the
desired algorithms. It is evident that algorithm design (the solution) is the
result of the problem analysis. A highly relevant question might be: is it
possible to solve a problem without going through any design process ?

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 168

Evolutionary Engineering (EE) is a discipline of engineering soft
computing. EE aims to solve the problem of building complex systems
without going through any design process (N.J.Macias, 1999),(H.De Garis,
1993),(W.B.Langton et al, 1996).
 EE is defined to be “the art of using evolutionary algorithms approach such
as genetic algorithms (D.E.Goldberg,1989) to build complex systems”(H.De
Garis , 1993).

Essentially, by imitating nature, the Evolutionary Engineering scientists
describe an elementary structure of the system and then evolve this structure
toward the desired system.. The Genetic Algorithm is a key-tool for
evolving such huge systems.

However, one may keep in mind that EE design might start from scratch,
only prior knowledge, learning techniques, and a powerful physical (or
logical) machine support and devices are necessary to make grow a
particular application.

The EE-Method (A.Lehireche et al, 2001) intends to guide EE designer
along the design process to achieve and implement a particular application.
We carried out several experiments in the EEDIS laboratory applying the
EE-Method (A.Lehireche et al, 2001) on several different applications so to
test its efficiency.

In this paper, we intend to apply and test the EE-Method on the well-
known XOR problem. EE-Method is carried out to design or build a Neural
Network XOR relying on an evolving algorithm.
Simulation results show that the proposed EE-Method is highly relevant in
evolving small systems.

In section 2 we report the EE-Method as specified in (A.Lehireche et al,
2001), sections 3,4,5,6,7,8 are the application of the related method to the
neural net XOR problem, section 9 yield the implementation results and
section 10 concludes this paper.

2. Evolutionary Engineering Method (EE-Method)
The EE-Method (A.Lehireche et al, 2001) aspires to explicit and simplifies
the EE approach. It also tries to enlarge the scope of Ggenetic Programming.
Six steps make up the EE-Method. Each step is a vital phase. The step order

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 169

ensures the coherence of the approach but it is not unique (A.Lehireche et
al, 2001), (A.Lehireche et al, 2000).

Given a Complex system:

Step 1: Ensure the Availability Of
- The Inputs (data, parameters, or values),
- The outputs, and
- The Input/Output relationships: this means that we are able to express any

output in terms of input of the desired system.

Step 2: Choose a Model
Choose a model with which the desired system should be implemented,
such as:
- Neural Networks,
- Automata,
- Petri Nets,
- Electronic Circuits,
- Graphs,
- Programs,
etc…

Step 3: Choose a System Genotype
Use the Genetic Programming (GP) techniques to encode the model.

This step produces the structure of a Chromosome. A chromosome must
encode all the system. The chromosome is the genotype form of the system.

Step 4: Determine The Adaptation Function of the System
The adaptation function is a measure that points out to the system evolution
degree during the evolving phase. In general, this represents the measure of
the input-output association conformity (the fitness or objective function in
Genetic Algorithms).

Step 5: Choose a System Phenotype
During the evolving phase, to be able to evaluate the adaptation function of
an occurrence of the system; we must proceed as follow:
1. Extract the real characteristics of the occurrence of the system by

decoding the

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 170

 chromosome.
2. Implement the system model according to its characteristics.
3. Simulate the behaviour of the system.

The real characteristics of an occurrence of the system are called system
phenotype.

 Step 6: Use A Genetic Algorithm As Follow
A) Generate randomly a population of chromosomes (each chromosome is

a system genotype).
B) For each chromosome do: genotype phenotype system

implementation,
 Start up the system,
 Inject inputs, retrieve outputs,
 Evaluate the system adaptation function.
C) Select genotypes of the most adapted occurrences of the system.
D) Produce a new generation by applying the crossover and the mutation

operators to the
 selected genotypes.
E) Repeat B), C) and D) until the desired system is reached (with an

acceptable fitness).

3. Evolving an Neural Network XOR using the EE-Mehod
3.1 The XOR problem:

The exclusive-OR (XOR) problem is a standard problem and is often
used as a test for neural network. It is well known that the XOR is not
linearly separable (Yan Le Cun, 1987) and for this reason we consider it as a
good test (A.J.F.Van Rooij et al, 1995). The following table depicts the
XOR function.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 171

3.2 EE-Method Step 1: Problem definition

The following relation expresses the input/output association:
 E = {0 , 1}
 R: E x E E
 R = { ((0,0),0) , ((0,1),1) , ((1,0),1) , ((1,1),0) }

3.3 EE-Method Step 2: Choosing the model
The model with which we desire to implement our example is the “Neural
Networks” (NN). A NN is characterised by its topology and the
functionality of the artificial neuron.

 Topology of the NN.

A recurrent NN is selected for this purpose. A recurrent NN is a self
fully connected NN. This topology has the advantage that does not deal with
any specific details of the NN, such as number of layers, number of neurons
in each layer, number of hidden layers, how neurons are connected and so
on …Only the number of neurones has to be chosen. For our example the
NN contains 5 neurones. This choice is motivated by our knowledge on the
XOR problem. Fig. 1 shows such topology.

Fig. 1: Recurrent NN (5 neurons)

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 172

 Artificial neuron functionality.

Fig. 2 and 3 shows in details the behaviour of the artificial neuron. The
neuron transfer function is a sigmoid function. External inputs are used to
control the NN (H.De Garis , 1993). We use them to direct input data into
the NN.
Sj ≡ input signal “j”.
Wji ≡ weight associated to Sj for the neuron “i”.
 Ei ≡ external input of the neuron “i”; when used its weight is set to 1.0
 if not to 0.0.

Fig. 2: Artificial Neuron as a single node

Fig. 3: Neuron’s output function

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 173

3.4 EE-Method Step 3: System genotype

The set of weights determines fully the behaviour of the recurrent NN;
then the chromosome witch represents the system genotype is simply: the
set of coded weights.
 Fig. 4 describes the chromosome structure.

Fig.4: Chromosome structure

Wji denotes the weight associated to the signal Sj comming from neuron j
into neuron i.
Each weight is coded with 7 bits and has its value in the range [-1,+1].
The chromsome legth is 5*5*7=175 bits.
In fig.4 W11 is interpreted as follows:

Bit 0 = 1 ⇒ weight is a negative value.
Bit 1 = 1 ⇒ weight = weight + 1* 2-1 = weight + 1*0.5.
Bit 2 = 1 ⇒ weight = weight + 1* 2-2 = weight + 1*0.25.
Bit 3 = 1 ⇒ weight = weight + 0* 2-3 = weight + 0*0.125.
Bit 4 = 1 ⇒ weight = weight + 1* 2-4 = weight + 1*0.0625.
Bit 5 = 1 ⇒ weight = weight + 1* 2-5 = weight + 1*0.03125.
Bit 6 = 1 ⇒ weight = weight + 0* 2-6 = weight + 0*0.015625.

So:

W11 = -(0.5 + 0.25 + 0.0625 + 0.03125) = -0.84375.

3.5 EE-Method Step 4: The Adaptation Function of the System

During the evolution phase, for a system in test, we note :

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 174

- Ai : the actual output for a set i of input data .
- Di : the desired ouput for a set i of input data.
- Fitness : the adaptation function.

The adaptation function (i.e. the fitness) is the distance (i.e the gap) between
the actual outputs and the desired outputs. The fitness is not an absolute
measure but is subject to the way we compute it. The fitness formula
influences strongly this measure.

For the XOR the fitness is expressed as follow:

SSD = ∑ (Di – Ai)2,(i=1,4)
Fitness = if (SSD > 1) then 1/SSD else 1 – SSD.

 Example:

Input 1 Input 2
Desired
output
(Di)

Actual
output
(Ai)

0 0 0 0.43
0 1 1 0.25
1 0 1 0.12
1 1 0 0.03

Given the above data, the fitness is computed as follows:

SSD = ∑ (Di–Ai)2,(i=1,4) = (0-0.43) 2+ (1-0.25) 2 + (1-0.12) 2 + (0- 0.23) 2
 = 0.1849 + 0.5625 + 0.7744 + 0.0529
 = 1.5747
Fitness = 1/ SSD = 1/ 1.5747 = 0.635
This result means that the gap between the system in evolution and the
desired system is .365.

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 175

3.6 EE-Method Step 5: System Phenotype

In this step the evolutionary engineer have to make choices on how his
system must be implemented. In our case we have to implement (simulate) a
recurrent NN.

The fact that we are evolving systems by mean of their genotype form,
we need to decode each chromosome to obtain the recurrent NN weights
real values. These values are stored in a “weight table” (Fig. 5). The external
input data are stored separately in vector noted “E” and for each neuron the
computed output signal is stored in a vector noted S.

 The weight table, the vectors E and S are the phenotype form of the
system in evolution.

Fig. 5: The Weight Table

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 176

 The recurrent NN simulation algorithm:

Given the weight table W, the external input data vector E and the output
signal S the recurrent NN simulation program is as follows:

Loop
 {
 For i= 1 to neuron number // compute the output signal for each neuron.
 {
 For j=1 to neuron number
 {ACTIVI = ACTIVI + Wji * Sj} // compute the activity of neuron i (Fig. 2).
 ACTIVI=ACTIVI + Ei; // inject input data to neurone i (Fig. 2).
 Si = 2 / (1 + exp (-ACTIVI))-1 // apply the output function f (Fig. 3).
 }
 } Until Stability //the recurrent NN is activated many times to reach
 //the stability (equilibrium state).

3.7 EE-Method Step 6: Evolution phase

The evolution phase is an operational phase; the evolutionary engineer must
implement the overall software, taking into account all the decision made in
steps 1 to 5.
Fig. 6 describes the architecture of such software.

Fig. 6: Evolution scheme

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 177

 Evolution Software Parameters for the XOR :
Number of Neurons 5,
Number of input neurons 2,
Number of output neurones 1,
Weight code length 7 bits,
Chromosome length 175 bits,
Numbers of cycle to reach the NN stability 100,
Type of crossover Uniform crossover,
Crossover probability 0.6,
Mutation probability 0.001,
Selection strategy Roulette wheel,
Evolution strategy Elitism,
Scaling constant 2.0,
Population size 100,
Number of generation until fitness > 0.99

4. Experimental results
In EEDIS laboratory, we have implemented a software; namely GES or
Genet Evolution Software. This software uses evolutionary engineering
concepts as specified by the EE-Method (A.Lehireche et al, 2001).
Notice that a similar work has been presented by G.A.Jayalakshmi et al.
They performed almost the same experiment (The XOR) with a totally
different approach in a sense that the chromosome structure is different, and
the evaluation scheme is different also.
In their work, the selection procedure and the algorithm termination criteria
lead to a premature convergence (within four generations!) . In such case,
the evolved architecture does not converge to a global optimum (best
topology) as pretended in the paper.
Our paper, however, proposes a different method that evolves the system
topology (as mentioned in "CAM Brain project" (H.De Garis)), and takes
into consideration the best-fit GA parameters, and therefore led to fast GA
convergence. Such GA parameters are difficult to establish at first glance.
These have been set according to several simulation tests so to avoid
premature convergence.
Notice also that the same method (EE method) had been used to evolve a
real-time neural network controller for a robot using the Genet Evolution
Software (A.Lehireche et al, 2003). Results show that the evolved NN
controller performs as good as a classical PID controller.

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 178

5 . Conclusion
Evolutionary Engineering creates an elementary structure of the system and
then evolves this structure toward the desired system. Evolutionary
Algorithms are powerful tools for evolving such huge systems. Such process
relies on observing and imitating natural systems. EE-Method intends to
guide EE designer along the design process to achieve and implement a
particular application. This paper shows, step by step, how to apply the EE-
method to a specific example: the neural net XOR problem. The results
yield in section 8 are significant. We had repeated the experiment on several
different Neural Networks configurations to evolve an NN XOR system.
Evolutionary Engineering techniques are proven in the recent past to be
efficient methods to evolve systems. They have also capabilities of
generating several different solutions on several runs for the same problem.
Furthermore, further works and investigations must emphasize on evolving
more complex systems to test to what extend the EE method would be
reliable and exhaustive.

 Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.5 No.2 1425 (2004)

 179

6. References
1. A J F Van Rooij, L C Jain, R P Johnson, “Neural Network Training Using

Genetic Algorithms”, World Scientific, Series In Machine Perception &
Artificial Intelligence, Vol.26.

2. Lehireche, A. Rahmoun and A. Gafour: “Highlights the Evolutionary Engineering
Approach: the EE-Method”, ACS/IEEE International conference on computer systems
and applications (AICCSA 2001), Beirut, 0-7695-1165-1/01, pp5-12, Copyright 2001
IEEE.

3. Lehireche, A. Rahmoun, “Evolutionary Engineering Approach: the EE-
Method”, lecture notes, EDDIS lab, Dept of computer science, UDL Sidi Bel
Abbes, Algeria, 04/ 2000.

4. Lehireche, A. Rahmoun, "Real time Evolutionary Engineering in Tracking
Problems: Evolving a Real-Time "Track and Evolve" neural Network for a
Robot", lecture notes, EDDIS lab, Dept of computer science, UDL Sidi Bel
Abbes, Algeria, 02/ 2003.

5. D.E. Goldberg, “Genetic Algorithms in Search, Optimisation, and Machine
Learning”, Addison –Wesley Publishing Company, 1989.

6. Hugo de Garis ,Michael Korkin , Felix Gers , Norberto Eiji Nawa ,
MichaelHough , "CAM-Brain, Atr's Artificial Brain Project An Overview”,
Brain Builder Group, Evolutionary Systems Department, ATR Human
Information Processing Research Labs, September 1998.

7. Hugo de Garis , Genetic Programming: GenNets, Artificial Nervous Systems,
Artificial Embryos, PHD thesis 1993.

8. G.A.Jayalakshmi et al, An Evolutionary Programming Approach to Evolve
The Architecture of Artificial Neural Networks.

9. Nicholas J.Macias, “Ring Around the PIG: A Parallel GA with only local
interactions coupled with a Self-Reconfigurable Hardware Platform to
implement an O(1) Evolutionary Cycle For Evolvable Hardware”, Proceeding
of 1999 Congress on Evolutionary Computation, Copyright 1999 IEEE.

10. William B. Langton, Adil Qureshi, ”Genetic Programming, Computers Using
‘Natural Selection’ To Generate Programms”, Lecture Notes of a survey, Dept
Of Computer Science, University College London, 1996.

11. W.B.Langdon, Genetic Programming Bibliography, Revision Date:
2001/05/05,
W.B.Langdon@cwi.nl,ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/biblio
/gpsubmit.html, 2001.

12. Yan Le Cun, Modeles Connexionnistes de l’Apprentissage,These de Doctorat,
Universite Paris 6,1987

 On Applying an Evolutionary Engineering Method … A. Lehireche & A. Rahmoun

 180

 تطور ذاتي : تطبيقات خاصة في الهندسة التطورية
 لنظم شبكات عصبية اصطناعية

 אאG

אאאא–
אא––אא

Gאאאא–א
א–אאא

אW

 א א אא א א K
 א א א א ?א

אאאאאK?

א א א XOR א
Kא

א א א K א א
אאאאXORK
א א א א ،

אK

אאW
א א ،א אא ، ، XOR ،א

אK

