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Abstract 
Evolutionary Engineering (EE) challenge is to prove that it is possible to 

build systems  without going through any design process.  

Evolutionary Engineering is defined to be “the art of using evolutionary 
algorithms approach such as genetic algorithms  to build complex systems”  .  

In this paper,  we attempt to solve the neural net XOR problem through 
using a method that relies on evolving neural structures and based on genetic 
techniques. A formal EE method had been proposed in the past . 

Our main purpose  is to show that the EE-Method  steps are highly 
relevant, and that the evolving principle is effective. We had implemented 
software using the EE concepts to build/evolve a neural net that solve the 
XOR problem.  

Results are prominent and show clearly that the proposed EE method can 
be easily extended to any type of neural network. 

Further works may emphasize on  how this method would be effective 
when size and complexity of the system to be designed (evolved) increase. 

 
Key words: Evolutionary Engineering, Genetic Algorithms, EE-Method, 
XOR problem, Neural Net, Evolve. 

1. Introduction  
Computer science theory is based on two major concepts: computability 

and complexity. The computability concept deals with the fact that problem 
solving induces the existence of algorithms. Furthermore, computer 
scientists may analyse problems and need strong  capabilities to design the 
desired algorithms. It is evident that algorithm design (the solution) is the 
result of the problem analysis. A highly relevant question might be: is it 
possible to solve a problem without going through any design process ? 
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Evolutionary Engineering (EE) is a discipline of engineering soft 
computing. EE aims to solve the problem of  building complex systems 
without going through any design process (N.J.Macias, 1999),(H.De Garis, 
1993),(W.B.Langton et al, 1996). 
 EE is defined to be “the art of using evolutionary algorithms approach such 
as genetic algorithms (D.E.Goldberg,1989) to build complex systems”(H.De 
Garis , 1993).  

Essentially, by imitating nature, the Evolutionary Engineering scientists 
describe an elementary structure of the system and then evolve this structure 
toward the desired system.. The Genetic Algorithm is a key-tool for 
evolving such huge systems.  

However, one may keep in mind that EE design might start from scratch, 
only prior knowledge, learning techniques, and a powerful physical (or 
logical) machine support and devices are necessary to make grow a 
particular application.  

The EE-Method (A.Lehireche et al, 2001) intends to guide EE designer 
along the design process to achieve and implement a particular application. 
We carried out several experiments in the EEDIS laboratory applying the 
EE-Method (A.Lehireche et al, 2001) on several different applications so to 
test its efficiency. 

In this paper, we intend to apply and test the EE-Method on the well-
known XOR problem. EE-Method is carried out to design or build a Neural 
Network XOR relying on an evolving algorithm. 
Simulation results show that the proposed EE-Method is highly relevant in 
evolving small systems. 

In section 2 we report the EE-Method as specified in (A.Lehireche et al, 
2001), sections 3,4,5,6,7,8 are the application of the related method to the 
neural net XOR problem, section 9 yield the implementation results and 
section 10 concludes this paper.  

2. Evolutionary Engineering Method (EE-Method)  
The EE-Method (A.Lehireche et al, 2001) aspires to explicit and simplifies 
the EE approach. It also tries to enlarge the scope of Ggenetic Programming.  
Six steps make up the EE-Method. Each step is a vital phase. The step order 
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ensures the coherence of the approach but it is not unique (A.Lehireche et 
al, 2001), (A.Lehireche et al, 2000). 

Given a Complex system: 

Step 1: Ensure the Availability Of   
- The Inputs (data, parameters, or values), 
- The outputs, and 
- The Input/Output relationships: this means that we are able to express any 

output in terms of input of the desired system. 

Step 2: Choose a Model  
Choose a model with which the desired system should be implemented, 
such as: 
-   Neural Networks, 
-   Automata, 
-    Petri Nets, 
-    Electronic Circuits, 
-    Graphs, 
-    Programs, 
etc… 

Step 3: Choose a System Genotype  
Use the Genetic Programming (GP) techniques to encode the model. 

This step produces the structure of a Chromosome. A chromosome must 
encode all the system. The chromosome is the genotype form of the system. 

Step 4: Determine The Adaptation Function of the System  
The adaptation function is a measure that points out to the system evolution 
degree during the evolving phase. In general, this represents the measure of 
the input-output association conformity (the fitness or objective function in 
Genetic Algorithms).  

Step 5: Choose a System Phenotype  
During the evolving phase, to be able to evaluate the adaptation function of 
an occurrence of the system; we must proceed as follow: 
1. Extract the real characteristics of the occurrence of the system by 

decoding the  
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      chromosome. 
2.    Implement the system model according to its characteristics. 
3.    Simulate the behaviour of the system. 

The real characteristics of an occurrence of the system are called system 
phenotype. 

 Step 6: Use A Genetic Algorithm As Follow  
A)  Generate randomly a population of chromosomes (each chromosome is 

a system genotype). 
B)  For each chromosome do: genotype  phenotype  system 

implementation, 
      Start up the system,  
      Inject inputs, retrieve outputs, 
      Evaluate the system adaptation function. 
C)  Select genotypes of the most adapted occurrences of the system. 
D)  Produce a new generation by applying the crossover and the mutation 

operators to the  
      selected   genotypes. 
E)  Repeat B), C) and D) until the desired system is reached (with an 

acceptable fitness). 

3. Evolving an Neural Network XOR using the EE-Mehod 
3.1 The XOR problem: 

The exclusive-OR (XOR) problem is a standard problem and is often 
used as a test for neural network. It is well known that the XOR is not 
linearly separable (Yan Le Cun, 1987) and for this reason we consider it as a 
good test (A.J.F.Van Rooij et al, 1995). The following table depicts the 
XOR function. 
   

Input 1 Input 2 Output 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 



 Scientific Journal of King Faisal University (Basic and Applied Sciences)                        Vol.5  No.2  1425 (2004)
 

 171 

3.2  EE-Method Step 1:  Problem definition 
 
The following relation expresses the input/output association: 
       E = {0 , 1} 
       R: E x  E                            E 
       R = { ((0,0),0) , ((0,1),1) , ((1,0),1) , ((1,1),0) } 
 
3.3  EE-Method Step 2: Choosing the model 
The model with which we desire to implement our example is the “Neural 
Networks” (NN). A NN is characterised by its topology and the 
functionality of the artificial neuron. 
 
 Topology of the NN. 

A recurrent NN is selected for this purpose. A recurrent NN is a self 
fully connected NN. This topology has the advantage that does not deal with 
any specific details of the NN, such as number of layers, number of neurons 
in each layer, number of hidden layers, how neurons are connected and so  
on …Only the number of neurones has to be chosen. For our example the 
NN contains 5 neurones. This choice is motivated by our knowledge on the 
XOR problem. Fig. 1 shows such topology.   
 

 
Fig. 1: Recurrent NN (5 neurons) 
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 Artificial neuron functionality. 

Fig. 2 and 3 shows in details the behaviour of the artificial neuron. The 
neuron transfer function  is a sigmoid function. External inputs are used to 
control the NN (H.De Garis , 1993). We use them to direct input data into 
the NN.  
Sj   ≡ input signal “j”. 
Wji   ≡ weight associated to Sj for the neuron “i”.  
 Ei      ≡ external input of the neuron “i”; when used its weight is set to 1.0   
               if  not to 0.0. 

 
Fig. 2: Artificial Neuron as a single node 

 

 
Fig. 3: Neuron’s output function 
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3.4  EE-Method Step 3: System genotype 

The set of weights determines fully the behaviour of the recurrent NN; 
then the chromosome witch represents the system genotype is simply: the 
set of coded weights. 
 Fig. 4 describes the chromosome structure. 
   

 
Fig.4: Chromosome structure 

 
Wji denotes the weight associated to the signal Sj comming from neuron j 
into neuron i. 
Each weight is coded with 7 bits and has its value in the range [-1,+1].  
The chromsome legth is  5*5*7=175 bits.  
In fig.4 W11 is interpreted as follows: 
 
Bit 0 = 1  ⇒ weight is a negative value. 
Bit 1 = 1  ⇒ weight = weight  + 1* 2-1 = weight + 1*0.5. 
Bit 2 = 1  ⇒ weight = weight  + 1* 2-2 = weight + 1*0.25. 
Bit 3 = 1  ⇒ weight = weight  + 0* 2-3 = weight + 0*0.125. 
Bit 4 = 1  ⇒ weight = weight  + 1* 2-4 = weight + 1*0.0625. 
Bit 5 = 1  ⇒ weight = weight  + 1* 2-5 = weight + 1*0.03125. 
Bit 6 = 1  ⇒ weight = weight  + 0* 2-6 = weight + 0*0.015625. 
 
So:  

W11  = -(0.5 + 0.25 +  0.0625 +  0.03125) = -0.84375. 

3.5  EE-Method Step 4: The Adaptation Function of the System 

During the evolution phase, for a system in test, we note : 
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- Ai : the  actual output for a set i of input data .  
- Di : the  desired ouput for a set i of input data. 
- Fitness : the adaptation function. 

The adaptation function (i.e. the fitness) is the distance (i.e the gap) between 
the actual outputs and the desired outputs. The fitness is not an absolute 
measure but is subject to the way we compute it. The fitness formula 
influences strongly this measure. 

For the XOR the fitness is expressed as follow: 

SSD = ∑ (Di – Ai)2,(i=1,4) 
Fitness = if ( SSD > 1)  then 1/SSD else 1 – SSD. 

 Example: 
 

Input 1 Input 2 
Desired 
output 
(Di) 

Actual 
output 
(Ai) 

0 0 0 0.43 
0 1 1 0.25 
1 0 1 0.12 
1 1 0 0.03 

 
Given the above data, the fitness is computed as follows: 
 
SSD = ∑ (Di–Ai )2,(i=1,4) = (0-0.43) 2+ (1-0.25) 2 + (1-0.12) 2 + (0- 0.23) 2 
                                                     =    0.1849  +  0.5625  + 0.7744  +  0.0529 
                                                     =    1.5747  
Fitness = 1/ SSD = 1/ 1.5747 = 0.635 
This result means that the gap between the system in evolution and the 
desired system is .365.  
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3.6  EE-Method Step 5: System Phenotype 

In this step the evolutionary engineer have to make choices on how his 
system must be implemented. In our case we have to implement (simulate) a 
recurrent NN.  

The fact that we are evolving systems by mean of their genotype form, 
we need to decode each chromosome to obtain the recurrent NN weights 
real values. These values are stored in a “weight table” (Fig. 5). The external 
input data are stored separately in vector noted “E” and for each neuron the 
computed output signal is stored in a vector noted S.   

 The weight table, the vectors E and S are the phenotype form of the 
system in evolution. 
 

 
Fig. 5: The Weight Table 
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 The recurrent NN simulation  algorithm: 
 

Given the weight table W, the external input data vector E and the output 
signal S the recurrent NN simulation program is as follows:    
 

Loop  
 { 
    For i= 1 to neuron number              // compute the output signal for each neuron. 
     { 
         For j=1 to neuron number 
        {ACTIVI = ACTIVI + Wji * Sj}   // compute the activity of neuron i (Fig. 2). 
         ACTIVI=ACTIVI + Ei;                  // inject input data to neurone i (Fig. 2). 
         Si = 2 / (1 + exp (-ACTIVI))-1       // apply the output function f  (Fig. 3). 
    }                                                   
 } Until Stability                         //the recurrent NN is activated many times to reach 
                                                   //the stability (equilibrium state). 
 

3.7 EE-Method Step 6: Evolution phase 
 

The evolution phase is an operational phase; the evolutionary engineer must 
implement the overall software, taking into account all the decision made in 
steps 1 to 5.  
Fig. 6 describes the architecture of such software. 
 

 
Fig. 6: Evolution scheme 
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 Evolution Software Parameters for the XOR : 
Number of  Neurons     5, 
Number of input neurons     2,  
Number of output neurones     1, 
Weight code length      7 bits, 
Chromosome length      175 bits, 
Numbers of cycle to reach the NN stability   100, 
Type of crossover      Uniform crossover, 
Crossover probability      0.6, 
Mutation probability      0.001, 
Selection strategy     Roulette wheel, 
Evolution strategy     Elitism,   
Scaling constant      2.0, 
Population size      100, 
Number of generation     until  fitness > 0.99 

4. Experimental results 
In EEDIS laboratory, we have implemented a software; namely GES or  
Genet Evolution Software. This software uses evolutionary engineering 
concepts as specified by the EE-Method (A.Lehireche et al, 2001).  
Notice that a similar work has been presented by G.A.Jayalakshmi et al. 
They performed almost the same experiment (The XOR)  with a totally 
different approach in a sense that the chromosome structure is different, and 
the evaluation scheme is different also.  
In their work, the selection procedure and the algorithm termination criteria 
lead to a premature convergence (within four generations!) . In such case, 
the evolved architecture does not converge to a global optimum (best 
topology) as pretended in the paper. 
Our paper, however, proposes a different  method that evolves the system 
topology (as mentioned in "CAM Brain project" (H.De Garis)), and takes 
into consideration the best-fit GA parameters, and therefore led to fast GA 
convergence. Such GA parameters are difficult to establish at first glance. 
These have been set according to several simulation tests so to avoid 
premature convergence. 
Notice also that the same method (EE method) had been used to evolve a 
real-time neural network controller for a robot using the Genet Evolution 
Software (A.Lehireche et al, 2003). Results show that the evolved NN 
controller performs  as good as  a classical PID controller. 
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5 . Conclusion  
Evolutionary Engineering creates an elementary structure of the system and 
then evolves this structure toward the desired system. Evolutionary 
Algorithms are powerful tools for evolving such huge systems. Such process 
relies on observing and imitating natural systems. EE-Method intends to 
guide EE designer along the design process to achieve and implement a 
particular application. This paper shows, step by step, how to apply the EE-
method to a specific example: the neural net XOR problem. The results 
yield in section 8 are significant. We had repeated the experiment on several 
different Neural Networks configurations to evolve an NN XOR system. 
Evolutionary Engineering techniques are proven in the recent past to be 
efficient methods to evolve systems. They have also capabilities of 
generating several different solutions on several runs for the same problem. 
Furthermore, further works and investigations must emphasize on evolving 
more complex systems to test to what extend the EE method would be 
reliable and exhaustive. 
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 تطور ذاتي : تطبيقات خاصة في الهندسة التطورية
 لنظم شبكات عصبية اصطناعية
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