

(Dı	ubertret, 1953) NW – SE	
3	50	300 - 5
(Kazmin and		. 0.5 -
-	(Parrot	,1980) Kulakov,1968)
.(Whitechurch	and Parrot, 1974) (Majer, 1	962) (Chenevoy,1959)
(Kazmin and Kulakov	,1968) (Chenevoy,1959)	(Dubertret, 1953)
(Piro,1967)		
		(Majer,1962)
K– Ar		
(Delalove MJ	88+3 (Thuizat etal.,198	1)
	,	
(Parrot .	/	MJ 90 etal.,1980)
(Parrot .	/	MJ 90 etal.,1980) and Whitechurch,1978)
(Parrot .		MJ 90 etal.,1980) and Whitechurch,1978)
(Parrot .	/	MJ 90 etal.,1980) and Whitechurch,1978)
(Parrot .	/	MJ 90 etal.,1980) and Whitechurch,1978)

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة <u>حمن بن محي</u> الدين س Schmelttableten Р .Lanthanium trioxide Κ Spektrophotometry .(AAS) Atomic absorption spectrometry Na .(- :) الدراسة البتروغرافية : (Chenevoy, 1959) (Dubertret, 1953) . (Whitechurch, 1977) (Majer, 1962), (Piro, 1967): (Kazmin and Kulakov,1968) ()

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة عبدالرحمن بن محي الدين ° 56 ° 124 (110)° 12 ° 25-° 8 0,015 - 0,026 .Gemeine Hornblende Fe^{+3}/Fe^{+2} (Leake, 1978) (Papike etal.,1974) 1.34<(Ca+Na)_x 0.67>Na_x (Na+K) А $Al_{(4)}$ $Si_{(z)}$ $Ti_{(y)}$ $Al_{(6)}/Fe^{+3}$ $(Na+K)_A \qquad Al_{(4)}$. (Na+K)_A (Leake, 1978) .(Safarjalani,1996) (–) Hastingsit – Tschermarkit % 28,4 - % 22,1

(-) X

(-) X G-

	5	Ċ	5	KE	KE	KE	BB	BB	QD	V	A	V	A	Y
2	G6	G12	G13	KE10	KE12	KE13	BB9	BB10	QD4	A2	A8	A14	AIS	A17
2	45.50	44.85	54.65	46.81	42.05	48.42	49.17	43.22	49.87	45.68	50.20	46.25	42.72	47.0
203	1.54	0.66	1.39	1.16	2.09	1.90	0.78	1.12	0.65	1.24	0.72	1.96	2.04	2.82
203	11.97	13.56	11.65	9.75	13.08	11.30	9.78	13.23	9.89	12.27	15.25	11.18	13.39	11.6
0	0.70	3.51	0.00	0.77	3.86	1.93	0.72	1.04	0041	0.90	0.00	1.34	1.05	0.00
0	18.79	14.58	13.20	13.14	10.71	15.30	13.18	3.64	18.29	14.37	12.97	13.90	10.77	12.4
0	12.17	11.51	12.60	12.38	12.05	11.56	12.62	11.91	12.15	11.95	12.37	12.32	12.10	11.5
20	11.98	9.47	12.87	13.21	10.90	6.94	13.37	17.77	1.01	10.74	7.51	10.35	14.81	11.9
0	1.72	1.60	1.82	1.21	1.49	0.94	1.11	1.49	1.60	1.99	0.86	2.15	1.89	1.44
mme	0.79	0.26	0.96	0.91	1.15	0.41	0.33	1.94	0.46	0.60	0.10	0.14	1.32	1.05
ation=23(0)	100.1	100.4	100.2	100.1	100.4	100.2	100.1	100.4	100.0	100.1	100.0	100.1	100.1	100.
(4)	6.50	6.35	6.55	6.72	6.14	6.71	6.95	6.38	06.9	6.49	6.87	6.58	6.24	6.68
mme (z)	1.50	1.65	1.45	1.28	1.86	1.29	1.05	1.62	1.11	1.51	1.14	1.42	1.76	1.32
	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
(9)														
3	0.52	0.61	0.52	0.87	0.40	0.64	0.60	0.68	0.51	0.54	1.32	0.45	0.55	0.63
	0.08	0.37	0.00	0.08	0.43	0.20	0.08	0.12	0.04	0.10	0.00	0.14	0.12	0.00
	0.16	0.07	0.15	0.17	0.23	0.20	0.08	0.12	0.07	0.13	0.07	0.18	0.22	0.30
2	2.94	3.08	2.82	2.87	2.33	3.16	2.78	1.90	3.77	3.12	2.46	2.95	2.35	2.63
mme (y)	1.31	0.87	1.51	1.50	1.62	0.80	1.46	2.18	0.62	1.12	0.86	1.27	1.77	1.42
	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	4.90	5.00	5.00	4.95
	0.12	0.25	0.04	0.08	0.08	0.01	0.00	0.01	0.20	5.16	0.00	0.02	0.04	0.00
	1.86	1.75	1.94	1.90	1.98	1.72	1.92	1.88	1.80	1.82	1.18	1.88	0.89	1.76
mme (x)	0.02	0.01	0.02	0.02	0.03	0.27	0.08	0.11	0.00	0.02	0.19	1.10	0.07	0.24
	2.00	2.01	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
	0.46	0.43	0.48	0.32	0.39	025	0.22	0.32	0.34	0.53	0.04	0.49	0.47	0.10
mme (A)	0.14	0.11	0.18	0.17	0.21	0.07	0.06	0.37	0.09	0.11	0.02	0.07	0.25	0.15
	0.61	0.54	0.66	0.49	0.60	0.32	0.28	0.69	0.43	0.64	0.06	0.56	0.72	0.35

()

-

Prp.Nr. S102 A1203		5																
Si02 A1203	66	G12	G13	KE10			KE12		KE13	BB9	BB13	QD4	A2	A8	A14	AIS		A17
Si02 A1203	P1	PI	P1	P1	P2	P3	P1	P2	P1	PI	P1	P1	PI	PI	Id	PI	P2	P1
A1203	69.68	56.88	60.92	52.25	51.44	47.98	53.09	57.59	55.73	64.63	60.92	52.00	59.43	60.37	59.52	52.53	52.47	64.31
E-103	20.92	20.39	19.99	29.01	15.951	33.56	27.15	23.75	28.26	20.33	19.99	28.67	22.95	22.88	23.27	29.12	29.18	37.03
F 6203	0.00	3.43	1.98	0.00	0.00	0.00	1.79	1.84	0.00	0.00	1.98	0.00	0.00	0.00	0.00	0.00	0.00	0.39
Ca0	8.57	14.46	12.85	14.28	14.60	14.39	12.92	11.11	11.97	8.66	12.85	14.24	12.77	12.21	12.43	14.11	14.03	12.78
Na20	5.82	3.20	4.27	4.36	4.36	4.08	5.06	5.71	4.04	6.37	4.27	5.09	4.85	4.54	4.78	4.24	4.42	4.49
K20	0.00	1.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sum.	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Kation=8(0)																		
SI	2.91	2.63	2.75	2.38	2.35	2.20	2.43	2.61	2.50	2.86	3.75	2.38	2.67	2.70	2.67	2.39	2.39	2.42
AI	1.04	1.11	1.06	1.56	1.59	1.81	1.46	1.27	1.50	1.06	1.06	1.55	1.22	1.21	1.32	1.56	1.57	1.46
Fe+3	0.00	0.12	0.07	0.00	0.00	0.00	0.06	90.0	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	10.0
Sum.	3.95	3.85	3.88	3.94	3.94	4.01	3.95	3.94	4.00	3.92	3.88	3.93	3.89	3.91	4.00	3.95	3.95	4.07
Ca	0.38	0.72	0.62	0.70	0.72	0.71	0.63	0.54	0.56	0.41	0.62	0.60	0.62	0.59	0.60	0.69	0.68	0.62
Na	0.47	0.92	0.37	0.39	0.39	0.36	0.45	0.50	0.35	0.55	0.37	0.45	0.42	0.39	0.42	0.37	0.39	0.33
K	0.00	01.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sum.	0.68	1.10	1.00	1.09	1.10	1.07	1.08	1.04	0.99	96.0	1.00	1.05	1.04	86.0	1.01	1.06	1.07	0.94
An	44.84	65.16	62.45	63.89	64.77	66.09	85.53	51.82	62.09	42.90	62.45	60.73	59.27	59.78	58.97	46.78	36.96	61.14
Ab	55.16	26.09	37.55	36.11	35.23	33.91	41.47	48.18	37.91	57.10	37.55	39.27	40.73	40.22	41.03	35.22	36.31	38.86
Or	0.00	8.75	0.00	00.0	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ln(xan/xab)	-0.21	0.92	0.51	0.57	0.61	0.67	0.34	0.07	0.47	-0.29	0.51	0.28	0.38	0.40	0.36	0.61	0.56	0.63

(Van de Kamp,	1968)			. mg
	с	al-alk		
				(Beuge,1989)
				(Na - Ca - M
		.Na ₂ O.(CaO) ²	$(CaO)^2 / (MgO)^2$
				(Beuge)
	(Frohlic	ch,1960)	.(-)
		Ni	Cr	
ppm- 20-150	Cr			ppm-20 Cr
		p	pm- 150) Cr
Со	ppm- 40		(Lang	ge,1965) .
			V	ppm- 200
	(Sieg	ferd,1988)		. QD-6 A-
c/fm				al-alk-c/i
		. ((1,5025	5)
		c/fm		
				. G - 13 G - 1

```
عبدالرحمن بن محي الدين سفرجلاني
```

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة

ة) ة	(سوريا	والبسيط	قة الباير	وليت منط) يب أمفيب	دول (۳ له في ترك	جا% الداخل	مقدرة بـ ر	لرئيسة م	فيميانية ا	فاصر ال	ما
Sum.	LIO	P2O5	K2O	Na2O	CaO	MgO	MnO	Fe2O3	Al2O3	TiO2	SiO2	Pro.Nr
100.1	0.82	0.25	1.3	3.32	8.56	8.94	0.17	13.12	15.9	2.62	45.1	G-01
99.98	1.80	0.15	0.95	2.75	8.87	8.71	0.17	11.33	16.81	1.32	47.12	G-02
100.75	1.11	0.12	0.72	2.71	10.16	10.67	0.18	14.55	14.48	2.45	43.60	G-03
99.83	1.24	0.34	1.80	2.50	6.70	9.45	0.18	12.80	14.66	3.16	47.00	G-04
99.65	1.68	0.32	1.18	3.51	10.50	6.98	0.15	12.81	15.06	2.68	44.78	G-05
99.66	0.80	0.25	0.73	3.97	7.72	7.63	0.13	15.34	15.45	2.34	45.30	G-06
99.92	0.65	0.35	1.50	2.75	8.08	9.90	0.17	14.13	15.14	3.15	44.10	G-07
99.88	1.66	0.32	0.93	2.39	11.58	8.92	0.16	9.78	15.12	2.72	46.30	G-08
99.91	0.68	0.25	1.14	1.70	14.90	9.48	0.15	10.66	13.58	2.17	45.20	G-09
100.07	1.55	0.31	0.51	3.09	7.90	7.88	0.13	10.49	15.24	0.72	52.25	G-10
99.96	1.12	0.35	1.00	3.16	10.40	8.07	0.18	13.10	14.76	2.62	45.20	G-11
99.92	1.59	0.35	0.48	2.91	8.23	6.77	0.13	12.24	15.12	0.93	51.17	G-12
100.05	1.72	0.23	0.50	1.16	29.73	6.27	0.22	7.71	7.93	1.68	42.90	G-13
99.27	1.83	0.19	0.08	2.58	9.58	8.42	0.16	11.80	16.09	1.46	47.08	G-14
100	1.87	0.27	0.37	0.63	32.04	3.02	0.17	8.18	9.8	2.22	41.43	G-15
100.06	1.74	0.36	0.74	4.19	8.54	7.53	0.14	12.78	14.31	2.48	47.25	G-17
99.9	1.74	0.31	0.76	4.14	8.92	7.52	0.14	12.12	14.38	2.51	47.36	G-18
101.76	1.84	0.05	2.36	2.06	11.42	9.32	0.13	11.40	14.52	0.86	47.80	KE-01
99.94	1.12	0.06	1.36	3.27	11.79	9.91	0.14	12.57	13.59	1.13	45.00	KE-02
99.92	1.45	0.17	0.55	2.98	8.65	6.43	0.16	9.98	16.45	0.65	52.45	KE-03
100.22	1.62	0.22	1.06	2.46	7.74	6.51	0.18	11.31	16.91	1.37	50.84	KE-04
100.61	0.55	0.09	0.55	2.02	14.57	9.22	0.16	10.19	15.94	1.32	46.00	KE-05
100.32	0.60	0.38	1.05	2.93	11.12	9.19	0.17	12.48	11.13	2.92	48.35	KE-06
100.93	0.67	0.30	0.88	2.17	12.18	8.73	0.11	10.19	13.73	2.27	49.70	KE-07
99.96	1.54	0.24	0.63	2.78	8.10	7.15	0.17	10.84	16.34	0.82	51.35	KE-08
100.00	1.03	0.27	1.16	2.36	8.24	7.55	0.18	11.80	16.70	1.41	49.30	KE-09
99.19	0.61	0.10	0.75	3.61	11.54	9.16	0.16	10.34	15.79	1.23	45.90	KE-10
100.36	1.20	0.40	0.82	2.32	13.31	8.90	0.18	13.75	11.04	2.74	45.70	KE-11
100.97	0.71	0.66	0.44	2.11	15.82	6.96	0.16	11.93	14.75	1.33	46.10	KE-12
99.89	0.65	0.13	0.47	2.43	14.37	8.35	0.14	12.18	15.37	1.40	44.40	KE-13
99.79	1.66	0.15	0.50	3.94	11.75	6.86	0.18	13.42	14.55	1.29	45.49	KE-14
99.07	0.78	0.25	1.14	2.60	12.87	9.64	0.17	11.24	12.97	3.51	43.90	KE-15
100.58	1.21	0.06	0.74	3.15	12.27	9.19	0.15	12.66	12.37	1.78	47.00	KE-16
98.83	1.27	0.18	0.74	2.47	12.14	11.97	0.15	11.54	11.67	1.50	45.20	KE-17
99.37	0.92	0.07	0.46	3.47	14.55	9.10	0.25	10.85	14.32	1.08	44.30	KE-18
99.90	1.40	0.32	1.13	2.78	11.36	8.44	0.20	12.51	14.26	2.90	44.60	KE-19
99.16	1.24	0.30	0.81	1.39	12.27	8.68	0.19	9.29	12.48	2.21	50.30	BB-01
99.64	0.15	0.42	0.32	1.11	13.44	7.35	0.19	10.62	15.95	3.89	46.20	BB-02
100.70	0.45	0.31	0.73	3.30	12.54	8.67	0.11	12.61	13.23	2.65	46.10	BB-03
100.64	1.44	0.24	0.59	2.14	10.08	10.04	0.16	12.79	12.46	2.70	48.00	BB-04
100.50	0.45	0.52	0.60	2.82	9.65	7.77	0.12	11.69	12.49	2.19	52.20	BB-05

					.("	جدول (تابع					
(2	(سوريا	والبسيط	قة الباير	وليت منط	يب أمفيب	له في ترك	% الداخل	لقدرة ب ₆	لرئيسة ه	يميائية ا	فاصر الك	الع
Sum.	LIO	P2O5	K2O	Na2O	CaO	MgO	MnO	Fe2O3	A12O3	TiO2	SiO2	Pro.Nr
99.73	1.26	0.47	0.59	3.82	10.43	6.56	0.12	12.22	13.79	3.37	47.10	BB-06
100.18	1.20	0.39	0.93	3.06	12.00	10.64	0.14	11.39	12.61	3.32	44.50	BB-07
99.63	0.67	0.41	0.92	1.17	11.69	7.74	0.14	14.09	12.78	2.12	47.90	BB-08
99.95	1.62	0.72	0.77	3.29	10.83	8.97	0.12	10.83	12.87	3.10	46.83	BB-09
98.84	0.61	0.29	0.15	1.02	11.49	10.97	0.14	11.88	12.80	2.29	47.20	BB-10
99.89	3.03	0.32	0.14	2.84	10.95	8.33	0.13	11.34	15.17	1.61	46.03	BB-11
98.69	1.36	0.21	0.60	4.47	9.68	8.14	0.18	11.28	14.20	1.67	46.90	BB-12
99.93	1.06	0.45	0.46	3.49	11.13	6.80	0.12	12.29	14.42	3.15	46.56	BB-14
98.78	1.39	0.47	0.50	3.66	9.58	8.87	0.13	11.89	13.75	2.54	46.00	QD-01
100.32	0.84	0.22	0.70	1.47	12.21	7.13	0.16	11.65	12.32	1.12	52.50	QD-02
98.86	0.87	0.05	0.28	2.13	13.06	10.05	0.19	9.37	13.31	0.95	48.60	QD-03
100.00	0.98	0.03	0.70	1.40	12.60	11.40	0.18	10.60	14.73	0.88	46.50	QD-04
98.79	1.12	0.02	0.86	1.93	12.55	11.49	0.15	9.31	14.42	0.74	46.20	QD-05
100.13	3.13	0.02	1.57	2.07	10.41	6.74	1.11	11.76	15.30	0.36	47.66	QD-06
100.00	1.24	0.35	1.98	2.06	10.32	8.34	0.21	12.22	16.12	3.63	43.53	QD-07
101.01	1.30	0.43	1.84	2.55	11.35	8.37	0.21	12.08	15.20	3.59	44.09	QD-08
99.66	0.87	0.34	0.19	2.67	11.93	7.95	0.17	14.72	13.73	1.99	45.10	A-01
100.46	0.67	0.07	0.51	2.58	13.78	9.71	0.16	9.76	14.03	0.89	48.30	A-02
100.21	0.56	0.10	0.67	1.49	14.63	7.38	0.20	12.15	15.76	2.07	45.20	A-03
101.32	0.68	0.05	0.75	2.56	13.59	8.90	0.15	11.41	15.48	1.25	46.50	A-04
100.18	1.01	0.06	0.48	3.17	11.46	9.52	0.15	10.17	15.34	1.32	47.50	A-05
100.73	0.72	0.07	0.66	2.51	14.43	7.31	0.09	12.14	14.65	0.95	47.20	A-06
100.44	0.89	0.08	1.07	2.90	11.27	8.48	0.19	11.55	14.27	0.84	48.90	A-07
99.82	0.71	0.08	0.37	3.47	12.77	8.25	0.16	11.12	13.12	1.57	48.20	A-08
99.43	0.95	0.06	0.20	2.12	10.98	11.21	0.18	11.93	13.63	1.27	46.90	A-09
100.79	0.67	0.06	0.20	2.20	11.85	9.17	0.21	10.95	14.27	0.91	50.30	A-10
100.50	0.87	0.08	0.50	2.45	12.12	8.39	0.18	11.08	14.50	1.53	48.80	A-11
100.42	0.76	0.09	0.24	3.29	13.25	7.15	0.18	10.45	14.04	0.97	50.00	A-12
100.55	1.93	0.18	0.66	2.85	9.12	6.95	0.18	10.08	16.42	0.62	51.56	A-13
99.94	1.76	0.21	0.63	2.61	8.87	7.13	0.17	11.13	16.31	0.68	50.44	A-14
98.95	1.19	0.10	0.71	2.20	13.30	9.06	0.15	10.01	15.60	1.33	45.30	A-15
98.74	1.08	0.06	0.80	3.07	14.60	10.06	0.13	9.51	14.23	1.00	44.20	A-16
100.00	1.86	0.18	1.30	3.52	10.06	10.18	0.14	9.32	14.41	1.77	47.26	A-17
100.08	1.39	0.05	0.45	2.64	11.23	8.21	0.16	9.13	15.08	0.91	50.83	A-18

-

()

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة

عبدالرحمن بن محي الدين سفرجلاتي

V	Co	Cr	Ni	Zn	Rb	Sr	Y	Zr	Pb	Cu	Pro.Nr
		165	112	122	29	698	26	105	17	119	G-01
249	83	204	118	103	36	934	40	143	19	93	G-02
		234	196	129	13	152	39	169	24	70	G-03
		135	126	94	16	324	30	123	32	99	G-04
222	70	195	109	124	27	626	31	148	26	127	G-05
		185	102	77	20	690	31	144	16	74	G-06
		146	126	104	67	275	30	148	17	130	G-07
		99	74	116	26	295	47	210	19	131	G-08
		122	80	83	22	419	25	141	27	139	G-09
254	68	149	118	84	48	876	40	149	20	156	G-10
		194	119	117	18	252	50	190	20	116	G-11
221	56	149	113	97	37	785	34	235	36	148	G-12
		290	108	86	< 10	332	26	114	20	139	G-13
204	65	174	100	105	32	678	33	149	21	105	G-14
		88	91	71	< 10	672	25	124	35	105	G-15
		238	125	85	12	659	28	120	18	105	G-17
234	67	210	124	98	< 10	706	34	134	18	89	G-18
225	69	588	190	61	< 10	490	26	102	24	80	KE-01
		344	190	75	22	272	30	119	14	78	KE-02
224	44	153	132	83	< 10	820	39	156	19	119	KE-03
266	43	230	170	65	< 10	312	30	122	17	100	KE-04
		537	143	87	15	699	31	147	16	105	KE-05
		194	118	108	< 10	200	48	278	21	150	KE-06
		241	125	90	< 10	212	48	256	20	122	KE-07
241	43	191	119	93	< 10	711	43	178	18	117	KE-08
280	45	176	134	76	< 10	249	26	131	17	115	KE-09
		191	138	86	< 10	447	20	94	16	134	KE-10
		241	114	110	< 10	722	45	290	19	129	KE-11
		162	104	68	< 10	280	28	128	14	111	KE-12
		215	168	59	< 10	435	36	177	< 18	100	KE-13
357	66	139	85	100	< 10	545	53	112	20	116	KE-14
		210	143	51	< 10	189	53	181	46	69	KE-15
		246	163	71	12	633	36	100	27	70	KE-16
		196	285	85	< 10	152	43	116	26	100	KE-17
		181	132	68	< 10	291	19	108	25	91	KE-18
		246	68	104	16	842	34	245	23	143	KE-19
		462	446	55	< 10	693	33	229	< 10	68	BB-01
		250	157	46	< 10	1777	60	365	33	119	BB-02
		156	109	70	16	421	37	267	25	116	BB-03
		505	265	116	< 10	254	37	224	18	112	BB-04
		196	131	103	18	971	40	207	16	114	BB-05

(+) (1 +)

V	Co	Cr	Ni	Zn	Rb	Sr	Y	Zr	Pb	Cu	Pro.Nr
305	78	174	98	97	< 10	517	51	248	20	89	BB-06
		304	216	80	< 10	711	23	214	< 10	106	BB-07
		238	183	102	12	571	37	254	16	135	BB-08
255	73	351	217	100	< 10	432	39	274	17	90	BB-09
		363	395	90	< 10	130	26	170	25	191	BB-10
233	92	376	454	74	< 10	116	29	152	16	95	BB-11
		269	221	72	< 10	807	40	350	< 10	140	BB-12
216	83	120	106	86	< 10	619	31	224	17	170	BB-14
		215	143	70	< 10	554	25	151	24	79	QD-01
		747	573	62	<10	212	36	125	23	73	QD-02
		271	231	78	< 10	225	30	210	22	76	QD-03
		318	239	31	< 10	579	17	210	22	74	QD-04
		454	228	100	< 10	457	42	289	22	117	QD-05
123	46	693	280	59	45	462	20	210	12	61	QD-06
		448	282	87	34	1061	40	331	< 10	61	QD-07
		358	290	79	31	925	36	218	< 10	53	QD-08
		147	131	109	27	312	23	131	27	99	A-01
		315	154	56	< 10	180	42	139	22	76	A-02
		249	174	74	< 10	87	28	143	25	101	A-03
		272	130	66	13	322	64	143	21	101	A-04
		307	98	62	<10	722	31	86	38	66	A-05
		349	143	76	15	309	25	98	23	98	A-06
		426	184	57	20	396	17	109	21	62	A-07
		326	104	76	< 10	370	30	116	22	74	A-08
		259	99	90	< 10	317	31	124	16	94	A-09
		299	129	57	< 10	249	28	128	12	75	A-10
		234	109	62	< 10	492	29	154	< 10	73	A-11
		146	139	75	< 10	462	28	180	< 10	64	A-12
226	38	272	187	78	< 10	272	29	131	25	92	A-13
243	41	219	134	45	< 10	454	29	135	< 10	76	A-14
		256	188	71	< 10	232	34	143	< 10	69	A-15
		254	185	76	13	451	23	128	14	96	A-16
		273	158	50	15	420	23	131	15	77	A-17
		301	193	62	< 10	247	23	146	21	69	A 19

- ()

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة عبدالرحمن بن محي الدين سفرجلانم (Miyashiro, 1975a; 1975b) (K, Na) • (Vallance, 1974) CaO Na₂O (La Roche etal., 1980) : R2 R1 R1 = 4Si - 11 (Na + K) - 2 (Fe + Ti); R2 = 6 Ca + 2 Mg + AlR1 R2 • SiO₂ Na₂O+K₂O (Middlemost,1980) K₂O+Na₂O (Irvin and Baragar,1971) SiO₂

		(Irvin and	l Baragar 10	071)	
		(II VIII all	u Daragar,13	ICP	W
)				101	
•				.(subalkalibasalt
P_2O_5			(Winches	ter and Floyd,19	76)
					Zr
					•
			(Miyas	hiro and Shido,	1975)
FeO'	* / MgO	TiO ₂		FeO* / MgO	FeO*
	FeO*	/ MgO	TiO ₂	FeO* / MgO	FeO*
FeO*	SiO ₂	(Miyashiro a	und Shido,1975)	
				Cr	SiO ₂ MgO/

:

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة

Al2O3 Na2O + K2O- FeO-MgO (Irvin and Baragar,1971) . (NPC)

 $Al_2O_3 - (FeO + TiO_2) - MgO$ (Jensen, 1976)

(Jensen, 1976)

تحديد الموقع الجيوتكتوني للصخور المهليه الأم:

(Pearce and Gale,1977), (Beccaluva etal.,1979), Ti,P,Mn,Zr,Nb, Y,Cr

.(Pearce, 1975), (Rittmann, 1973)

		(Pearce and Gale,1977)
	Ti/Y Zr/Y	(Zr , Ti , Y)
F3 , F2 , F 1		
F1	(Pearce etal.,	1976)
(W.P.B)		(-) F2
	(0.1	F.B)
(SHO)	(C.	AB+LKTB)
	(-) F3 F2
(LKTB)		(LAB)
		F2 F1
	(W.P.B)	
		(O.F.B)
Ni Ti/	′ Cr	
		(Beccaluva etal.,1979)

بتروغرافيا وجيوكيمياء الصخور المتحولة الأمفيبوليتية المرافقة

(Rittmann, 1973)

•

(Pearce and Cann, 1971)

(MORB)

Ba , K,P, Sr , Zn

.Nb, Cr, Y, Ti, Zr

Zr , Sr, P , K ,Rb

(Huch,1988)

(-) Cr , Y

.(Kosters,1991)

REFERENCES:

1. Beccaluva, L.;D. Ohnenstetter and M.Ohnenstetter. (1979): Geochemical discrimination between ocean floor and island-arc tholeites-application to some Ophiolites. In: Can. J. earth Sc.-Ottawa 16.S. 1874-1882.

(

- 2. Beuge, P. (1989): Zur Geochemie pelitischer Gesteine im prozess der Regionalmetamorphose. Freiberg. Bergakad., Diss. B.
- 3. Brown. E.H., (1977) : The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journ. Petrol.. 18:53-72.
- 4. Bucher.K. and M.Frey., (1994):Petrogenesis of Metamorphic Rocks.,Springer Verlag.318 S.
- 5. Chenevoy.M.,(1959) : le substratum metamorphiquie des roches vertes dans le Baer et le Bassit. NOtes et Memoires sur le Moyen-Orient,T.7.1-18.
- 6. Delaloye, M.; De H.Souza; J.J. WagnerandI.Hedley (1980b): Isotopic ages on ophiolites from the eastern Mediterranean. In: A.Panayiotou (Ed.), Ophiolites. Proc. Intern. Ophiolite Symp., Cyprus 1979, P.292-295.
- 7. Dubertret, L. (1953): Geologie des roches vertes du nordouest de la Syria et du Hatay (Turquie). Notes Mem. Moyen-Orient. 6.227p.
- 8. Evans, B.W.andB.E. Leake (1960): The composition and origin of the striped amphibolites of Connemara, Ireland. In: J.Petrol. Oxford 1., p.337-363.
- 9. Frohlich, F. (1960): Ein Beitrag zur Geochemie des chroms. Geochem. Cosm. Acta 20, 215-240.
- 10. Huch, K.M. (1988): Die Panafrikanische Khzama-Geosuture im zentralen Anti-Atlas. Marakko -172S. ; Berlin (SchelzkyandJeep).
- 11. Irvin, T.N.andW.R.A. Baragar. (1971): A guide to the classification of the common volcanic rocks. In: Can J.Earth Sc. Ottawa 8. p. 523-548.
- 12. Jensen, L.S. (1976): A newcation plot for classifying subalkaline volcanic rocks. In: Ontario Dep. Mines: Paper. Ontario, 66.
- 13. Juteau, T. (1980): Ophiolites of Turkey. Ofioliti (Spec. Issue) 2:199-237p.
- Kazmin, V.G,andV.V Kulakov, (1968): Geological Map of Syria sheet Bassit 1/50,000 explanatory notes: 124p. Mini. of petrol. and Mineral Resources, Syria.

)

- 15. Kosters, B. (1991): Geochemie und Petrogenese des Peridotit und der-Chromiterzvorkommen des Ophiolith-Komplexes im Bassit Gebiet (NW-Syrien). Diss. Naturwiss. Munster, 125S.
- 16. Lange, H. (1965): Zur Genese der Metabasite im sachsischen Erzgebirge. -Leipzig, 136 S. - (Freiberjer Forschungshefte: C-177).
- 17. La Roche, H. De.; J.Leterrier; P. Grandclaude; M.Marchal. (1980): A classification of volcanic and plutonic rocks using R1-R2- diagram and majorelement analysis. - In: Chem. Geol. - Amsterdam 29., P. 721-736.
- 18. Leake, B.E. (1978): Nomenclature of amphibolis. Amer. Mineral., 63: 1023-1052, Washington D.C.
- 19. Leake, B.E. (1964):The chemical distinction between Ortho-and Paraamphibolites.-In:J.Petrol.-Oxford 5.p.238-254
- Lorenz. W. (1980) : Petrographische Nomenklatur metamorpher Gesteine. I. Grundlagen. Konzeption. Systematik. In: Z.geol. Wiss. - Berlin 8;12. -S.1479-1509.
- Lorenz. W., (1981a) : Petrographische Nomenklatur metamorpher Gesteine. II. Klassifikatorische und Nomenklatorisch Spezialfragen. In: Z. Geol. Wiss. -Berlin 9 - S. 137-156.
- 22. Lorenz. W., (1981b) : Petrographische Nomenklatur metamorpher Gesteine. III. Generalisierung und Extrapoletionen. In:Z. Geol. Wiss. - Berlin 9-4. -S.417-426.
- 23. Majer, V., (1962) :Magmatisch Gesteine um Gebiet von Bassit zwischen Latakia und Kessab im nordwestlichen Syrien.Neves.Miner., Abh., 98.250-282S.
- 24. Mathe.G.,(1985):Metamorphite.In:Pfeiffer,L;Kurze,M;Mathe,G:Einfuhrung in die Petrologie.-Berlin.442-565S.
- 25. Middlemost, E.A.K. (1980): A contribution to the nomenclature and classification of volcanic rocks. In: Geol. mag. London. 117., p. 51-57.
- Miyashiro, A. (1975a): Classification, characteristics, and origin of ophiolites.
 In: geol. Chicago 83. p. 249-281.
- 27. Miyashiro, A. (1975b): Volcanic rock series and tectonic setting. In: Ann. rev. earth plan. Sc. palo. Alto 3., p. 251-269.

 Miyashiro, A.andF.Shido. (1675): Tholeiitic and calc-alcali series in relation to the behaviors of titanium, vanadium, chromium, and nikel. In: Amer. J. Sc. - New Haven 275. p. 265-277.

(

)

- 29. Papike J.J., Cameron. K.L.and Baldwin. K. (1974) :Amphibol and Pyroxenes: character of other than quadrilteral components and estimates of ferric iron from microprobe data.. Geol. Soc. Am.. Abstr. with program. 6. Boulder. Colorado.
- 30. Parrot, J.F. (1977): Assemblage ophiolitique du Baer-Bassit et termes effusifs du volcano sedimentaire Tra. et Doc. de 1 O.R.S.T.M. (these) 333p.
- 31. Parrot, J.F. (1980): The Baer-Bassit (Northwestern; Syria) ophiolitic area-Ofioliti (Spec. Issue) 2, 279-296; Bologna.
- 32. Parrot, J.F.and H.Whitechurch (1978): Subductions anterieures au charriage nord-sud de la croute tethysaenne: Facteure de metamorphisme du volcano-sedimentaire oceanique en schistes verts et amphibolites lies aux assemblages ophiolitiques syro-turcs. Rev. Geogr. Phys. Geol. dyn., 2:153-170.
- 33. Pearce, J.A. (1975): Basalt geochemistry used to investigate past tectonic environment of Cyprus., In: Tectonophys. Amesterdam 17. p. 15-43.
- 34. Pearce, J.A.and J.R. Cann (1971): Ophiolite origin investigated by discriminant analysis using Ti, Zr, and Y. In: Earth plane. Sclett. Amsterdam 12.p. 339-349.
- 35. Pearce, J.A.and G.H.Gale (1977): Identification of ore depositions environment from trace elements geochemistry associated to igneous hostrocks. - In: Volcanic processes in ore genesis/ed. M.J. JONES. London, p. 14-24. (Inst.min.metall. Geol.Geol.Sec. : spec.publ.:7).
- 36. Pearce, J.A.T.H. Gormanand,T.C. Birkett (1976): The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. In: Earth plan. Sc. lett. Amsterdam 36. p. 121-132.
- 37. Pichler. H., and Schmitt Riegraf (1993) : Gesteinbildende Minerale im Dunnschliff. Enke. Stuttgart S.230.
- 38. Piro. Y., (1967) : Conribution al etude des Roches verts du Nord-Ouest de la Syrie thesis 3eme cycle Montpellier 142p. (Multigr).
- Plyusnina. L.B., (1982) : Geothermometry and Geobarometry of Plagioclas -Hornblende earing assemblages. - Contrib. Mineral. Petrol.. 80: 140-146 Berlin - Heidelberg 1982.

- 40. Rittman, A., (1973): Stable mineral assemblages of igneous rocks. Berlin, Heidelberg. p. 262.
- 41. Rosler. H. J., (1983) : Lehrbuch der Mineralogie VEB-Deut. Verlag für Grundstoffindustrie.Leipzig. 833 S.
- 42. Safarjalani.A., (1996) :Petrographical and Geochemical Study of Metabasitic and Amphibolitic Metamorphic Rocks in the Ophiolithe complex in the Bear and Bassit (N.W.Syria) Report On Scintific Study Department of Geology and Nuclear Ores (AECS) 110p.
- 43. Safarjalani. A., and J. Eidam (1997) : Geochemistry and initial geotectonic setting of amphibolitic rocks outcropped in the Baer-Bassit area (Northwest Syria). Z.Geol.Wess. ,Band 25, Heft 5 6, 541 554 S.
- 44. Seim. R., (1967) : Der Para Biotit Plgioklasgneis des Kyffhauserkristallins seine metatektischen Derivate und seine Einlagerungen. Geol. 16. Beih. 56:1-85.
- 45. Siegferd, M. (1988): Mineralogie:Eine Einfuhrung in die speziellen Mineralogie, Petrologie und Lagerstattenkunde. 2. Auflage.
- 46. Spear. F.S., (1980) : NaSi-CaSi exchange equiliberium between plgioclase and amphibole. Contr. Mineral. Petrol.. 72. 33-41.
- 47. Spear. F., (1981a) : An experimental study of hornblende stability and compositional variability in amphibolite.. Amer. J.S.Sci.. 281: p. 697-734.
- 48. Spear. F., (1981b) : Amphibole-plagioclase equilibria: An emprical model for the relation albite -tremolite=edenite+4quartz. -Contrib. Mineral. Petrol. 77:p.355-364.
- 49. Thuizat ,R.;H.Whitechurch.,R.MontignyandT.Jutea.(1981):K-Ar dating of some infra-ophiolitic metamorphicsoles from the Eastern Meditteranean:New evidence for oceanic thrustings before obduction.Earth Planet.Sci.Lett52,302-310.
- 50. Vallance, T.G., (1974): Spilite degradation of a tholeiitic basalt. In: J.petrol. Oxford 15. -p. 79-96.
- 51. Van de Kamp, P.C. (1968): Geochemistry and origin of metasediments in the Haliburton-Modac area, Southwestern Ontario. In: Can. J. earth Sc. Ottawa 5. p. 1337-1372.

(

)

- 53. Whitechurch. H., and J.F. Parrot., (1974) : Les ecailles metamorphiques Infraperidotitiques du Bear Bassit. Cah. Orstom 6. 173-184.
- 54. Whitechurch. H., (1977): Les roches metamorphiques infraperidotitiques du Baer-Bassit (Nw Syrien). Termoins de L ecaillage intraoceanique tethysien. Etude petrologique et structural. Thesis (unpubl.) Nancy. Univ. Franc. 194pp.
- 55. Wimmenauer. W., (1985) : Petrographie der magmatischen und metamorphen Gesteine. Enke Verlag. Stutt gart. 382S.
- 56. Winchester, J. A; P.A. floyd (1976): Geochemical magma type discrimination appl. to altered and metamorphosed basic igneous rocks. In: Earth plan. Ac. lett. Amsterdam 28. -p. 459-469.
- 57. Winkler. H.G.F., (1965) : Die Genese der metamorphen Gesteine Berlin Heidelberg:218S.

Petrography and Geochemistry of the metamorphic amphibolitic rocks associating the Baer-Bassit ophiolithe (Northwest Syria)

A.M. Safarjalani

King Faisal University-Faculty of Food and Agriculture P.O.Box 420-31982 Al -Hofuf-Saudi Arabia. Damascus University- Faculty of Agriculture Land. Soil reclamation Division- Damascus P.O. Box 30621- Syria.

Abstract

Petrography of metamorphic rock samples from amphibolitic rocks outcropped in Baer-Bassit area enabled the mineralogical composition, structures, textures and hence the classification of these rocks to be defined.

The plotting of minerals percentages of the studied samples onto classification diagrams of (LORENZ) confirms that all of these samples lie in the field assigned to amphibolitic rocks.

The mineralogical paragenesis of the studied samples is in conformity with those of green schist up to amphibolite facies. The mineralogical analysis carried out by the use of electron microscope on plagioclase and hornblende in amphibolite samples set a metamorphism temperature between 500 - 650 $^{\circ}$ C and a metamorphism pressure between 2,5 - 5 K bar.

The geochemistry of these samples proves clearly and decisively that these rocks are derived from initial matter of orthogenic nature, possessing the characteristics of a fresh non-altered basaltic tholeiitic composition in part hence forming an oceanic floor and partially an island arc.