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ABSTRACT
This paper is interested in studying a type of production models-stocks that can be seen as a stochastic fluid flow 
system with upward jumps at level zero. The joint distribution of the stocks level and the controlling Markov 
process is governed by two differential systems with specific boundary conditions. The uniqueness of the solution 
of this problem has been proved. Also, a unified solution with no distinction between singular or invertible drift 
matrix is proposed. This method is based on the randomization technique, which is acknowledged by its numerical 
stability and accuracy.
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INTRODUCTION
Markov modulated fluid flow processes are a 
popular subject in applied probability. They 
are used in several applications especially in 
telecommunication networks modeling and 
production-inventory systems. In this pa-
per, we study the fluid level distribution in 
a buffer of infinite capacity where the input 
and output rates of the fluid in the system are 
controlled by a finite homogeneous Markov 
process. When the fluid level hits zero, the 
quantity of fluid instantaneously jumps to a 
predetermined positive level. These kinds of 
models are used generally in production-in-
ventory models. The fluid process represents 
the dynamic inventory level and the mod-
ulated Markov environment describes the 
production and sales seasons. In practice, 
each jump in the buffer content represents an 
instantaneous stock replenishment follow-
ing an order arrival. This jump occurs when 
there is no commodity to deliver in order to 
avoid unsatisfied commands or lost sales.

Asmussen and Kella (2000) developed a 
general theory on a multi-dimensional mar-
tingale for Markov additive processes and 
apply it on a Brownian inventory model 
where upward jumps occur according to 
a phase-type process. The inventory lev-
el distribution has been determined via its 

Laplace transform. Miyazawa and Takada 
(2002) gave an exponential matrix form of 
the stationary distribution of a buffer content 
with downward jumps, where matrices are 
numerical solutions of an integral equation. 
Kulkarni and Yan (2007) studied inventory 
models with instant stock replenishments. 
They derive a system of first order non-ho-
mogeneous linear differential equations for 
the steady-state distribution. The solution is 
based on an eigenvalues/eigenvectors com-
putation of a key matrix.  They also studied 
the economic order quantity policy that min-
imizes the long-run average cost. Kulkarni 
and Yan (2012) expanded the model to ale-
low backlogging and exponential lead times. 
Matrix-analytic methods have been largely 
explored in stochastic fluid models. Da Silva 
and Latouche (2005) showed that the fluid 
queue is independent from the modulating 
process if the latter switches instantaneously 
to a state with a positive rate when the flu-
id level drops to zero. Latouche and Taylor 
(2009) give the probability density for mod-
els allowing changes of phase permitting 
sojourn in level zero. Barron et al. (2014) 
considered a production-inventory control 
model with two reflecting boundaries, rep-
resenting the finite storage capacity and the 
finite maximum backlog. They combined 
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the matrix-analytic approach and martingale 
notion to derive a closed form of various 
functional costs.

It is well-known that spectral methods are 
numerically instable, for more details see for 
instance Abbessi and Nabli (2008). For ma-
trix-analytic methods, the solution is com-
monly expressed by means of an exponential 
matrix that depends on a key matrix, solution 
of a matrix equation. The resolution of this 
matrix equation to within a tolerance error 
may have an impact on the accuracy on the 
distribution of the fluid level. More recently, 
Nabli et al. (2016) showed among others that 
matrix-analytic methods are also numerical-
ly instable. In this paper, we deal with the 
asymptotic distribution of fluid level with a 
fixed upward jump at level zero. Kulkarni 
and Yan (2007) showed that the joint distri-
bution of the fluid level and the modulating 
Markov process is governed by a system of 
first order non-homogeneous linear differ-
ential equations with specific boundary con-
ditions. Our aim is to prove the uniqueness 
of the solution of differential system and to 
propose a numerical solution, which is nei-
ther spectral nor based on matrix-analytic 
method. It utilizes the uniformization tech-
nique which is acknowledged by its numer-
ical stability since it involves only positive 
numbers bounded by one.

MATERIALS AND METHODS
We consider a production-inventory stochas-
tic stock model, where the production and 
demand  are supposed to be controlled by 
an irreducible Markov process 0( )t tX X ≥=  
over a finite state space .S  The infinitesimal 
generator of X is denoted by ,( ) .ij i j SA a ∈=  
When the modulated process X is in state 

,i  the demand occurs at a constant rate ic  
and the production is done at rate .ir  Thus, 

i i id r c= −  represents the effective input 
rate associated to state :i  while the process 
X  stays in state ,i  the fluid level increases 

or decreases at rate id depending on the sign 
of .id  If id  is null, the fluid level remains 
unchanged. When the system becomes emp-
ty, the fluid level jumps instantaneously to a 
fixed level 0.q >  Let us consider the follow-
ing notations:

{ / 0},iS i S d+ = ∈ >  S { / 0}ii S d− = ∈ <   
and 0 { / 0}.iS i S d= ∈ =

Let ( , )i i Sπ= ∈π  be the stationary proba-
bility distribution of 0( ) :t tX ≥

lim ) ( ).i tt
X i X iπ ∞→∞

= ( = = = 
The random variable X ∞ stands for the limit 
in distribution of 0( ) .t tX ≥  It is well-known 
that π  satisfies the linear system of equa-
tions A = 0π  and 1,i

i S
π

∈

=∑  where 0  is the 
null vector of dimension the cardinality of 

.S  Let tQ  be the fluid level in the system 
at time .t  The system is stable if and only if:

                      
                                            (1)

In this case, the limiting distribution of the 
process 0( ) ,t tQ ≥  denoted ,Q∞  exists. Let 

( ) ( , )iF x Q x X i∞ ∞= > =  be the joint dis-
tribution of ( , ),Q X∞ ∞  the probability ( )iF x  
is equal to the limit of ( , )t tQ x X i> =  
when t  tends to infinity. Kulkarni and 
Yan (2007) had shown that the row vector 

( ) ( ( ), )ix F x i S= ∈F satisfies the following 
differential equation: 

where D is the diagonal matrix composed 

by the effective input rates id  and ' ( )xF  
is the derivative of ( )xF  with respect to 
the variable .x  Kulkarni (2007) had proved 

: 0.i i
i S

dµ π
∈

= <∑

' '

'

0
'

( ) ( ) (0) , 0
( ) ( ) A,
( ) ( ), \

( ) (0) 0,
lim ( ) 0,

(0) 1,

i i
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ix
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i S
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F x i S

F

+ −

+

+ −

+

→∞

∈

 = + ∀ ≤ ≤


= ∀ ≥
 = ∀ ∈
 = ∀ ∈


= ∀ ∈


=

∑
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that, under the stability condition, the lim-
iting distribution ( )xF is continuous on 
[0, )∞  and piecewise differentiable on (0, )q  
and ( , ).q ∞

RESULTS AND DISCUSSION
Our aim in this section is to prove the solu-
tion uniqueness of the problem ( )P  assum-
ing that the stability condition holds. The 
proof will be achieved in two steps. First, 
we suppose that the drift matrix D is invert-

ible or equivalently 0 .S =∅  In this case, the 

functions ( ); ;iF x i S∈  are continuous at 
point .q  Next, it will be proved that the case 
where the matrix D is singular comes down 
to the first case.

Theorem 2.1
If there is no vanishing effective input rates 
and under the stability condition (1), the 
problem ( )P  has a unique solution.
Proof: Since the matrix D is nonsingu-
lar, the differential system on (0, )q  be-

comes ' '( ) ( ) (0),x x M= +F F F  where 
1.M AD −=  First, we show that the vector 

space C  of solutions of this differential system 
is of dimension 1:N +  dim 1,N= +C  where  

' '{ : (0, ) differentiable / ( ) ( ) (0)}.Nq x x M= → = +RC F F F F
For this purpose, let us consider the follow-
ing correspondence:

where ,α bF  is the element of C  that satis-

fies (0)i
i s

F α
∈

=∑  and ' (0) .=F b The cor-

respondenceφ  is actually an application: 

each element ( , )α b  has one and only 

one image ( , ).φ α b  One can check easi-

ly that 1

1 !

n
n

n

x M
n

α−

≥

+∑b π   is an element of 

C  which satisfies the boundary conditions 
(0)i

i s
F α

∈

=∑  and '(0) .=F b  The image 

,

:
( , ) ( , )

N

α

φ
α φ α
× →

=
R R



C

bb b F

( , )φ α b  is unique, otherwise there exist 

two elements F  and G  in C  that fulfill 

the same boundary conditions. The differ-

ence ,= −H F G  which is naturally in C , 

satisfies (0) 0i
i s

H
∈

=∑  and ' (0) .= 0H  At 

point 0 ,x +=   the differential system gives 

(0) .M = 0H  Under the stability condi-

tion, Nabli and Ouerghi (2009) had proved 

that 0 is a simple eigenvalue of .M  Since

,M = 0π  then (0) γ= πH   for a real .γ  

The equality (0) 0i
i s

H
∈

=∑  leads to state that 

0γ =  and therefore (0) .= 0H  Taking into 

account of the condition ' (x) ( )x M=H H  

and the last result (0) ,= 0H  the only 

solution of the differential system is 

( ) (0)exp( ) .x xM= = 0H H  This proves 

the required result .=F G  So, φ  is an appli-

cation which is clearly linear. The same argu-

ments above prove that φ  is injective and sur-

jective, thus dim dim 1.N N= × = +R RC   

In other words, knowing the values of 
(0)i

i s
F α

∈

=∑  and ' (0) ,=F b  the solution 

F  on the interval (0, )q  is:
1

1
( ) .

!

n
n

n

xx M
n

α−

≥

= +∑F b π

Now, for the second differential system 

related to the case ,x q>  the solution is

( ) ( ) exp(( ) ).x q x q M= −F F  The remaining 

boundary condition lim ( ) 0,ix
F x i S

→∞
= ∀ ∈  

implies necessarily that ( )qF  is orthogonal 

to all eigenvectors associated to nonnegative 

eigenvalues of the matrix .M  According to 

our previous analysis, the continuity at point 

x q=   and the equality (0) 1i
i s

F
∈

=∑  permit 
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to conclude that ' 1

1
( ) (0) .

!

n
n

n

qq M
n

−

≥

= +∑F F π  

Nabli and Ouerghi (2009) proved that M  

has exactly | |S −   nonnegative eigenvec-

tors, where | |S −  stands for the cardinality 

of .S −  Since ( )qF  is expressed by means 

of ' (0),F  the last result combined with the 

boundary condition ' (0) 0,iF i S += ∀ ∈  lead 

to define the vector ' (0)F  by a unique way. 

In conclusion, the solution of Problem ( )P  

is unique and it is equal to: 
' 1

1
(0) , for [0, ]

( ) !
( ) exp(( ) ), for

n
n

n

x M x q
x n

q x q M x q

−

≥


+ ∈= 

 − ≥

∑F
F

F

π      

▀
Now, let us deal with the general case where 

the drift matrix D is singular: 0 .S ≠ ∅

Theorem 2.2
Under the stability condition (1), the solu-
tion of Problem ( )P  exists and it is unique.
Proof: First of all, it is interesting to remark 
that the last condition  in ( )P  can be replaced 
by (0) ,= πF  which is a stronger condition.
The infinitesimal generator A  and the diag-
onal matrix D  can be ordered according to 

the partition 0
ˆS S S= ∪ , where ˆ :S S S+ −= ∪   

0 0 0 00

0 0
ˆ ˆ ˆ ˆˆ

ˆˆ

0
and ,

0 0
SS SS SSS

SS S S S SS

A A D
A D

A A

  
 = =      

ditto for the row vector 

( )0ˆ( ) ( ) ( )
S Sx x x=F F F . The two differ-

ential systems corresponding to the subset 

0S  lead to the following shared system:

0 0 0 00
ˆ ˆ( ) ( ) 0 , 0.S SS SS S Sx A x A x+ = ∀ >F F

Since A  is irreducible, the submatrix 
0 0S SA  

is invertible (see for instance Bhat, 1984). 

The above system is equivalent to:

          00 0 0ˆ ˆ
1( ) ( ) ( ) .S SSS SS

x x A A −= −F F        (3)

So, the determination of ˆ ( )
S

xF  in a unique 

way gives 
0
( )S xF  and therefore the whole 

solution ( )0ˆ( ) ( ) ( )
S Sx x x=F F F  in a 

unique way. For this purpose, let us consider 

the two differential systems related to Ŝ :
0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

' '

'

( ) ( ) ( ) (0) , 0

( ) ( ) ( ) ,
S S S SS S S S

S S

S S

S SS SS S

x D x A x A D x q

x D x A x A x q

+ −

+

 = + + ∀ ≤ ≤


= + ∀ ≥

F F F F

F F F

By injecting Identity (3), the above differen-
tial systems turn into:

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

' '

ˆ
'

( ) ( ) (0) , 0
ˆ) ( ,

ˆ

( )
S S S S S

S S S

x D x D x q

x D

A

x A x q

+ −

+

 = + ∀ ≤ ≤


= ∀ ≥

F F F

F F

where 
0 00 0

1
ˆ ˆ ˆ ˆ

ˆ ( )S SSS SS S S
A A A A A−= + − . It is 

well known that Â is an irreducible infini-

tesimal generator and that its steady-state 

vector, denoted by π̂ , is:

( )
0

ˆ ˆ
ˆ

ˆ

ˆ , where , .
1

ˆ
i

i i
i Si

S S
S

S

Siπ
π π

∈∈

= = = ∈
−∑ ∑

π π
π π

The summary of Problem ( )P  on the subset 

Ŝ is:

The stability condition associated to this 

problem is 
ˆ

ˆ 0i i
i S

d π
∈

<∑ , which is indeed sat-

isfied since 
ˆ

ˆi i i i
i S i S

d dπ α π
∈ ∈

=∑ ∑ . The hypoth-

esis of Theorem 2.1 is actually satisfied for 
ˆ( )P . 

                          ▀
It is useful to state that even if the matrix  

is singular, the solution of Problem ( )P  re-

mains continue at point q  giving that 
Ŝ

F  is 

0

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

'

ˆ

' '

'
ˆ

ˆ

ˆ( ) ( ) (0) , 0
ˆ( ) ( ) ,

( ) ( ),
ˆ( ) (0) 0,

lim ( ) 0,

ˆ(0) , where 1

ˆ

ˆ

ˆ

i

S S S S S

i

i

ix

i
i S

S S S

S S

x D x A D x q

x D x A x q

F q F q i

F i

S

S

S

S

F x i

α α π

+ −

+

+ −

+

→∞

∈

+

 = + ∀ ≤ ≤

 = ∀ ≥

 = ∀ ∈
 = ∀ ∈ =
 = ∀ ∈

 = = = −


∑

P

F F F

F F

F π π

(2)
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continue and 
0SF  is a linear combination of 

the components of 
Ŝ

F . The property of con-

tinuity is crucial in the resolution of partial 

differential system related to stochastic flu-

id models. Some mathematical mistakes or 

incompleteness due basically to inattentive-

ness to a discontinuity property are reported 

in Nabli and Alwan (2016).

CLOSED FORM OF SOLUTIONS

Kulkarni and Yan (2007) expressed the solu-

tion by means of eigenvalues end eigenvec-

tors of the matrix . Identity (2) gives an ex-

plicit solution depending of the matrix .M  

By contrast with Matrix-Analytic-Methods 

(MAM in short), Identity (2) does not in-

volve any matrix that is solution of a matrix 

equation. In the next section, another closed 

form expression of the solution is proposed, 

it is neither spectral nor MAM. Moreover, 

it deals simultaneously with the case D  in-

vertible and D  singular. Finally, it is use-

ful to point out that despite the uniqueness 

of the solution related to Problem ( ),P  the 

approaches of resolution are multiple and 

therefore the expressions of the solution are 

multiple.

Simple case

This subsection deals with the case where 

the cardinality of the state space S  is com-

posed only by two states, one in S +   and the 

other in ,S −  denoted respectively by 1 and 0. 

The infinitesimal generator A  and the diag-

onal drift matrix D  are written as follows:
1

0

0
and .

0
d

A D
d

β β
α α
−  

= =  −   
The next theorem gives a closed form for the 

joint distribution of the bivariate ( , ).Q X∞ ∞

Theorem 3.1

For the particular case 2,S =  the solution 

of Problem ( )P   is:

where 
1 0 1 0

( )( )
d d d d
β α α β µγ +

= − + = −   and 

1 0
α βπ π

α β α β
 

= = = + + 
π   is the sta-

tionary distribution of the process 0( ) .t tX ≥

Proof: It is easy to check that 0 and γ  are the 

two eigenvalues of the matrix 1M AD −= . 

The associated eigenvectors are 1

0

d
d
 

=  
 

d  

and  0

1

π
π
− 
 
 

 respectively. So, it comes that:

1 01 1

0 1

0 0
, where .

0
d

M AD P P P
d

π
γ π

− − −  
= = =   

   
The fourth boundary condition in ( )P  gives 

'
1 (0) 0.F =  The expression in Identity (2) for 

the particular value x q=  is equivalent to:

It has been established in the poof of Theo-

rem 2.1 that ( )qF  is orthogonal to all eigen-

vectors associated to nonnegative eigenval-

ues. In the case 2,S =  this property reduces 

to ( ) :q ⊥F d
( )

( )

' 1
0

1' 1
0

0

'
0

0

0
( ) 0 (0) 010

1
0 (0) 0, since

0

(0) , since .

q

q
q F P Pe

d
q F P

d

F
qd

γ

γ

µ µ

−

−

 
 ⊥ ⇒ + =− 
 
 
   

⇒ + = =   
  

⇒ = − =d

F d d d

d d

π

π

π

1
1

0

( )
1

1
0

1(1 ) 1 , for [0, )

( )
1 , for ,

x

x x q

dx e x q
q q d

x
de e x q

q d

γ

γ γ

π
γ

π
γ

−

  −
− + − ∈  

 = 
 − − ≥   

F

π

( )

( )

' 1
0

1

' 1
0

( ) 0 (0)
!

0
0 (0) 10

n
n

n

q

qq F M
n
q

F P Pe γ

γ

−

≥

−

= +

 
 = +− 
 
 

∑ π

π

F
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By replacing '
0 (0)F  by its value in the ex-

pression of ( )qF mentioned above, it is easy 

to show that:

          
1

1
0

1( ) 1 .
q deq
q d

γ

π
γ

 −
= − 

 
F       (4)

Let us deal now with the case [0, ).x q∈
Thanks to Identity (2) and the expression of 

'
0 (0)F   established previously, we obtain:

Since 1 01

0 1

1P
d d

π π
µ

−  
=  − 

, we get:

1 0
0 1

0 10

1
1

0

1 1(x)

1(1 ) 1 .

x

x

ed x
d dqd

dx e
q d

γ

γ

π π
π

γ

π
γ

  −
= − +   −  

 −
= − + − 

 

π

π

F

The first part of the proof is then achieved, 

it remains to prove the case x q>  for which 

Identity (4) will be of great interest:

Taking into account of the equality 

0 0 1 1d dπ π µ+ = , we obtain:

▀

( )

1

10

1

0

1
0 1

0

(x) 0
!

0
0 10

0
10

n
n

n

x

x

x M
qd n

x
P Peqd

x
d P Peqd

γ

γ

µ

µ

γ

µ π
γ

−

≥

−

−

 
= − + 

 
 

   = − +−      
 

 
 = − +− 
 
 

∑F π

π

π.

( )

( )1
1

0

11
1 ( )

0

( ) ( ) exp ( )

1 1 exp ( )

1 01 1 .
0

q

q

x q

x q x q M

de x q M
q d

de P P
q d e

γ

γ

γ

π
γ

π
γ

−
−

= −

 −
= − − 

 
  −

= −   
   

F F

1
1 ( )

0

( ) 1
1

0

( )
1

1
0

1 01( ) 0
0

1 0

1 .

q

x q

q
x q

x x q

ex P
q d e

e e P
q d

de e
q d

γ

γ

γ
γ

γ γ

µπ
γ

µπ
γ

π
γ

−
−

− −

−

  −
= −   

  
 −

= − 
 

 −
= − 

 

F

The stability condition (1) forces the param-

eter γ  to be negative. The two-state exam-

ple was studied by Kulkarni (2007). From 

a mathematical point of view, its solution is 

naturally equal to the one proposed in Theo-

rem 3.1. The difference lies in the proof and 

also in the solution expression which is less 

crowded in Theorem 3.1.

General case

In this subsection, we give an expression of 

the unique solution of Problem ( )P . This 

solution is based on the technique of ran-

domization which is acknowledged by its 

numerical stability, since it involves only 

nonnegative real numbers bounded by 1.

It is well-known that the matrix AP I
λ

= +  

is stochastic, where max{ / }iia i Sλ = − ∈   

and I  is the identity matrix. Let d be 

the smallest positive effective input rate: 

min{ / }id d i S += ∈ . The next theorem 

gives an analytic solution of Problem ( )P  

without any spectral analysis on the ma-

trix 1M AD −= . In contrast with previous 

works, this result does not distinguish be-

tween the case where D is invertible and D

is singular.

Theorem 3.2

The expression of the solution of Problem 

( )P   is:

For [0, )x q∈
1

1 0
( ) ( ) (1 )

!

n

x n
d

n k

x
d xdx e k
q n q

λ
λ

λ

−−

≥ =

 
 
 = + −∑ ∑F b π

For x q≥
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( )1 1

1 0 1 0

( )

( ) ( ) ( )
! !

n n

x x qn n
d d

n k n k

x x q
d d dx e k e k
q n n

λ λ
λ λ

λ

−− −− −

≥ = ≥ =

−   
   
   = −∑ ∑ ∑ ∑F b b

where ( ) lim ( , )
n

k n k
→∞

=b b  and 

( )( , ) : ( ( , ), )i n k
n k b n k i S

≥
= ∈b   is the se-

quence defined by the following recursive 

expressions:

•	 For i S +∈  

( ,0)i ib n π=  and for 1, ,k n= 

( , ) 1 ( , 1) ( 1, 1)i i j ji
j Si i

d db n k b n k b n k p
d d ∈

 
= − − + − − 
 

∑
•	 For 0i S S−∈ ∪  

( , ) 0ib n n =  and for 1, ,0k n= − 

( , ) ( , 1) ( 1, )i
i i j ji

j Si i

d db n k b n k b n k p
d d d d ∈

−
= + + −

− − ∑
Proof: According to Theorem 2.1, it is suffi-

cient to prove that ( )xF  satisfies all the con-

ditions of Problem ( )P . For the last bound-

ary condition, it is clear that (0) 1,i
i S

F
∈

=∑  

since 1.i
i S

π
∈

=∑
•	 (0, )x q∈

( ) ( )1
'

1 0 0 0

1 1( ) ( ) ( )
! !

n n
x xn n

d d

n k n k

x x
d dx e k e k

q n q n q

λ λλ λ−− −

≥ = ≥ =

= − + −∑ ∑ ∑ ∑F b b π

     At the point 0,x =  the above equality 

gives ' (0)(0)
q q

= −
bF π . Since ( ,0)i ib n π=   

 for all i S +∈ , the limit on the index n  leads 

to (0)i ib π=  and therefore ' (0) 0iF = , for all 

i S +∈ . By taking into account the fact that 
( )

0
1

!

n
x

d

n

x
de

n

λ λ
−

≥

=∑ , the difference between ' ( )xF

and ' (0)F  fulfills:

                                                                  (5)
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The recursive formula related to the 

sequence ( )( , )i n k
b n k

≥
 given separately for 

i S +∈  and 0i S S−∈ ∪  can be lumped into 

one expression:

( , ) ( ) ( , 1) ( 1, 1)i i i i j ji
j S

d b n k d d b n k d b n k p
∈

= − − + − −∑
By taking the limit over n : 

Where ijδ is the Kronecker symbol. In matrix 

form, the above equality can be written as 

follows:

                                                                               
(6)                                  

Merging this last equality in Identity (5), we 

get:

Replacing the matrix P I− by its value A
λ

, 

it comes that:

Now, let us deal with the case x q> . 

•	 ( , )x q∈ +∞
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By adding and subtracting the same term 
(0)b , the previous equality becomes:

Taking into account of Identity (6), the 

same mathematical development for the 

case (0, )x q∈  leads to the required result 
' '( ) ( ) Ax D x=F F . To achieve the proof 

of this theorem, it remains to prove the con-

dition lim ( ) 0, .ix
F x i S

→∞
= ∀ ∈  This property 

holds giving that the series
0

( )
k

k
≥
∑b  con-

verges (see the appendix for the proof) and 

from the fact that:
( )

0
lim lim ,

!

n
x

d
n nx nn

x
de a a

n

λ λ
−

→∞ →∞
≥

=∑  for all conver-

gent sequence ( ) 0
.n n

a
≥

This last result is classical and its proof is 

easy.     

                                                             ▀

The matrix P  is stochastic, all its entries 

are nonnegative and the sum of each row 

is equal to 1. According to the recursive 

formula, each element ( , )ib n k  is a convex 

combination of two elements in [0,1].  It is 

easy to prove by induction that the sequence 

( )( , )i n k
b n k

≥
 is a nonnegative sequence 

bounded by iπ . Also, the terms ( )
!

n
x

d
x

de
n

λ λ
−  

are actually the Poisson distribution. All 

these remarks ensure the numerical stability 

of the proposed method since it involves 

only positive elements bounded by 1. On the 

( )
[ ]

( )
[ ]

1
'

0 0

( ) 1

0 0

1( ) ( 1) ( )
!

( )
1 ( 1) ( ) .

!

n
x n

d

n k

n

x q n
d

n k

x
dx e k k

q n

x q
de k k

q n

λ

λ

λ

λ
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− −−

≥ =

= + −

−

− + −

∑ ∑

∑ ∑

F b b

b b

other hand, the sequence ( )( , )i n k
b n k

≥
  is 

exactly the same one used in Nabli (2004) 

for general stochastic fluid models.
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Appendix

The objective of this appendix is to proof the 

convergence of the series 
0

( )
k

k
≥
∑b . Consid-

ering that AP I
λ

− = ,  Identity (6) is equiv-

alent to:

where 1dC I AD
λ

−= + . Nabli (2004) has 

proved that the sequence ( ) 0
( )

k
k

≥
b  con-

verges to .0  Thus (0)b  is orthogonal to all 

eigenvectors of C associated to eigenvalues 

θ  satisfying 1.θ ≥  So, the series 
0

( )
k

k
≥
∑b  

converges since only eigenvalues of module 

less than 1 are involved. Here it is supposed 

implicitly that D  is invertible 0( )S =∅ . For 

the case where D  is singular, the partition 

0
ˆS S S= ∪  must be considered. The proof 

follows the same demarche made in Theo-
rem 2.2.

1

( ) ( 1)

( ) ( 1)

( ) (0)C ,k

dk D k D A

dk k I AD

k

λ
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 = − + 
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الملخص 
ــة  ــة. عملي ــة ماركوفي ــة ببيئ ــاج والمخــزون المعدل ــا في نظــم الإنت ــة يُســتعمل غالبً ــة العشــوائية ذات القفــزات التصاعدي أنمــوذج العملي
الســوائل تمثــل مســتوى المخــزون والبيئــة الماركوفيــة توصــف مراحــل الإنتــاج والمبيعــات. التوزيــع الثنائــي لمســتوى الســوائل والبيئــة 
الماركوفيــة يحقــق نظامــن لمعــادلات تفاضليــة جزئيــة مــع شروط حديــة خاصــة. في هــذه الورقــة البحثيــة تــم إثبــات وحدانيــة الحــل ومــن 

ثــم اقــراح حــاًّ تتوفــر فيــه شروط الاســتقرار العــددي والدقــة.
الكلمات المفتاحية: عملية ماركوف، المعادلات التفاضلية الجزئية، نماذج السوائل العشوائية.


