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ABSTRACT

The sweeping processes correspond to several important mechanical problems. Therefore, the existence theorems
of solutions for sweeping processes have been attracted the attention by many authors.

In this paper, we aim to prove existence theorems concerning the existence of solutions for functional differential
inclusions governed by sweeping process with non- compact valued perturbations.

Depending on a discretization technique used in recent papers, we prove two new existence results of solutions for
first and second order functional differential inclusions governed by sweeping process with non- compact valued
perturbations, where the moving set is a multifunction depending on time and state and with nonempty closed
uniformly p-prox-regular values. We do not assume that the values of the moving set are contained in a fixed
compact subset. In addition, our technique allows us to discuss some sweeping process problems with noncompact

perturbations.
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INTRODUCTION

Moreau, 1979, initiated the existence of
solutions for sweeping processes. Since
then, important improvements have been
developed by weaken assumptions in order
to obtain the most general result of existence
for sweeping processes, see (Thibault, 2003,
Castaing, et al. 2009, Aitalioubrahim, 2012,
Gomaa, 2013, Haddad and Haddad, 2014).

Let r>0, C, =C([-r,0],H) be the Banach
space of continuous functions from [-7,0]
to H endowed with the uniform norm,
IK :[-r,0]xH — 2" multifunctions with
nonempty, closed and uniformly p-prox-

regular  values(p>0), F:IxC, »>2"a
multifunction with closed and convex(not
necessarily compact)values. For each

tel, definez(¢):C([-r,t],H)—>C, by

(tt)g(s)=g(t +s),Vs e[-r,0].Let ¥, D €C,
be fixed two functions. Consider the
following first and second order nonconvex
sweeping processes with delay:

u@)=W@),t e[—r,0];

u(t):‘P(O)+_’[u'(s)ds,t el; (1)
u@)el't,u@)),t 1l :
—u'@)EN g uuy@@N+F @, c@)u), ae. t €1,

and
u@)=¥Y), t €[—r,0];

u(t)=T(0)+]u’(s)ds, tel,
. (2)
p@)=®0)+ [u(s)ds, tel,

t,p 0
u@)eK@,ul)),tel;

u'@)eN i ,ayU@N+F@,z(t)u),aet €l

Several authors under different assumptions
have studied the existence of solutions for
the problems(l) and (2). For example:
Chemetov and Monteiro Marques, 2007,
considered the problem(1) without delay and
whenT" taking a closed uniformly p-proxy
regular (p>0) values and F' is Crartheodary
with compact convex values. Castaing
(2009), established the existence of solutions
for the problem (2) without delay and in the
case when K is a Lipschitz multifunction
with closed uniformly p-proxy regular

(p>0) values, andF :I xH xH —2" s
upper semi continuous with nonempty
convex compact values. Aitalioubrahim,
2012, considered the problem(1) when

I':7 - 2" is a multifunction (I'" depends
on the time only) and taking nonempty
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compact, uniformly p-proxy regular (p>0)
values in H. Haddad (2013), established
the existence of solutions for the problem(1)
without delay and when I'" is a Lipschitz
multifunction with closed uniformly p-proxy

regular (p>0) values such that I'(¢,x)c Z,

for all (t,x)el xH for some fixed compact
set Z , and F'is a convex weakly compact
valued multifunction. Haddad and Haddad
(2014), considered the problem(1) when the
values of F are convex and weakly compact

and for any convergent sequence(t,) in/
and for any bounded set 4 c H , the set

UC(,,x):n>1,x €A} is ball compact.
Noel and Thibault (2014), established the
existence of solutions of the problem(1)
without delay and the wvalues of I are
closed uniformly p-proxy regular (p>0) and
ball compact. For other contributions on
differential inclusions, see (Gomaa, 2013).

Motivated by these works, in this paper,
we prove the existence of solutions
of (1.2) and (1.3) in the case when

I,K :[-r,0]xH — 2" are multifunctions
and taking a closed p-proxy regular (p>0)
values in H (not necessarily ball compact),

and F :1 xC, —2" is a multifunction with
nonempty closed (not necessarily compact)
values. We assume that neither the values
of " nor the values of K are contained in a
fixed compact subset. Instead, we suppose
that both I' and K satisfying a condition
contains a measure of noncompactness. In
addition, our technique allows us to discuss
some sweeping process problems with non-
compact valued perturbations.

MATERIALS AND METHODS

In order to achieve our goals we use the
discretization technique used in Castaing et
al. (2009), and Aitalioubrahim (2012), with
the following known definition and facts:
Definition 2.1. (Edmond, and Thibault,
2006) “If S is a closed subset of H and

x € H , then the proximal normal cone of S

at x 1is defined by:
N{(x)={y €H :31>0suchthat x € P;(x + 1y )}

where P (z) is the projection of the point z
onS.”

It is known (see for example, Castaing et al.
2009, Haddad, 2013, ) that

N (x)=0"wg(x), whered’w (x) is the

proximal subdifferential of the indicator
function wg(x) of S, ie. w (x)=0 if

x €8 and oo otherwise”.

Definition 2.2 (Edmond, and Thibault, 2006)

“For a given p €]0,], a subset S is said to
be uniformly p-prox-regular, if and only if
every nonzero proximal normal vector can
be realized by a p-ball”.

For more information about uniformly
p-prox-regular sets, we refer the reader to
(Edmond, and Thibault, 2006, Castaing
et al. 2009, and Haddad, 2013).

Lemma 1. (Edmond, and Thibault, 2006,
Castaing et al. 2009, Haddad, 2013). “Let
S be a nonempty closed subset in H. The
following assertions are satisfied.

1. Forany x €S N{(x)(1B =0"dy(x), where
the function d(x) is the distance function
andB ={x e H ||x |[£1}.

2. If § is uniformly p-prox-regular subset

in H where p €]0,0], and x € H such that
dg(x)<p,then
(i) P (x) is a singleton.

(11)0”dg(x ) =0"dg(x ), where, 0°d (x)
is the Clark subdifferential. So, in such case
the subdifferential is a closed convex subset
in H.”

As a consequence of (ii) we get that for
nonempty closed uniformly p-prox-regular

sets S and x € H such thatd(x )< p, then

NZ(x)=Ng(x).
Lemma 2. (Prop. 2.2. Haddad, 2013). “Let
p€]0,0], Q be an open subset in H , and
C Dbe a Hausdorff continuous set-valued
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mapping defined on Q and with nonempty
closed uniformly p-prox-regular values in

H . Then, for a given n€ (0, p) the following
holds: forany z € Q, x eC(z)+(p—-n)B
X, X

z, »zwith z,e€Q and

v, eag(zn)(xn)such that(y )

converges weaklyto y onehasy €0¢ ., (x)

2

Lemma 3. (lemma 3.2, Zhu, 1991). “Let X
be a separable Banach space, G :[a,b]— 2*
a measurable multifunction with nonempty

z :la,p]>X a
function. Then, for any

closed wvalues and
measurable

measurable function 7 :[a,b]—[0,) there
exists a measurable
selection g¢ of G such that

lgt)-z(@)|=d(z(t),G{t)+r(t),ae.t €la,b].

RESULTS

In this section we prove two existence results
of solutions for the problems (1) and (2).
1-Existence result of solutions for the
problem(1).

Theorem 1. Let H be a real separable Hilbert
space, I':IxH —2" be a multifunction
with nonempty closed uniformly p-prox-

regular values and F:IxC, —2" be a
multifunction with nonempty closed values.
We assume the following conditions:

(H1) There is a positive real number k such
that: I'(¢,x) c kB, V(t,x) e I x H.

(H2) There are two constants L, >0 and
L,e(0,]) such that for all #,se/ and

x,u,ve H

| dr(z,u)(x) - dF(s,v)(x) ISL|t=s|+L|u—v]|.

(H3) For any # € / and any bounded subset

A'in Hwith y(A4)>0 and any » >0 one has,
21, HNrB) < x(A),

where, y is the Hausdorff measure of
noncompactness on H.

(H4) For any weC, the function

t— F(t,iy) is measurable and there is

me L'(I,R™) such that for any fe/ and

vy, eC,

h(E (@t p ), Ft,y,)<m@) ||y, —v, llc, -
(H5) There exists a continuous function
w: I —> R*® such that for all y € C.,and all
tel, F(t,y) < w(O)(A+ [ w(0) |)B.
Then, for any fixed YeC,, with

¥ (0)eI'(0,¥(0)), there is a continuous
function

u:[-r,T]1— H such that u is Lipschitz on
[0,T] and satisfies (1).

Proof. Let n,=2 be a natural nymber
satisfying 4)

Li+2L,(+k) T _p
1-L, 2M 2
where, L, = max w(t). For any natural

b

number n > n,and any 1=0,1,2,...,.2" =1, we

considerthepoints, ¢ =iy, 1, zg—n.Also,
let 6,0,:1—1 be such that:6,(0)=0,
0,()=1 te ], 8,() =1

i+1°

telt',t'), o (T)=T,1=0,1,2,..,2" —1.
Step 1. We show that if 5 > 1, is a fixed
natural number and } e [} (I,H) » then there
are y e C([-r,T],H) and g, e L'(I,H)
such that u, is absolutely continuous on I
and the following properties hold:

(i)uyz(t):'//(t)a t E[—l’,o];
(it )u,,(6,) €T, ()., (5,(1), 1 €1
(iii)g, () e F(t,2(5,(0)u,), tel; ©)

<z‘v>Hg”(r)—ha)HSd(h(z),F(t,r(ﬁn(z))un)>+n%, aetel

(V)_u,'; (t)_gn (t) ENr(gﬂ(l),u”(o‘”(z)))(un (6,, (t)))ﬂ}/]B, a.etel,

L +2L,(1+k) .
where, "= Z; .Inview of Lemma

3, thereisa function g € L'([¢],¢'], H) such

that g (t)eF(t,7(0)), a.e.t €[ty ,t,']
and

||gé’(t)—h(t)IISd(h(t),F(t,T(O)l//)+nflz, a.-e.t eyl (6)
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We put X, =¥ (0) €I'(0,x;) and @)

n
x/ :projl_(t‘,,’xg)(x(’)’ — J'g(’)’ (s)ds).

Let us show that x;' is well defined. By (H2)
and (HS5) we have

o s
dreny 8 = [ @iy <d . o i)+ [llgs () llds
i I

Sy G0 =y o GO+ [ Ly (1| 2O )(O) s

<Lyl =15 |+, L ([ (0) D

stL Lt s AU T2 )y ®
2

As T'(¢,,x;) 1s uniformly p-prox-regularity,
by Lemma 1 and (8), x;' is well defined.
Then, we can define for ¢ €[¢;, x;],

e T PO PO ©)

u,@)=xq +

n

Observe that this relation yields

ul (1) =x" —(xg — | gg (s)ds)—g; (t),a.e. fortelt, ']

fo

So, by (7)

uy(t)+g'te-N

(1)t (G (1))

(u,0.0), a.c.for telt! 7] (10)

Moreover, the condition (H2) tells us
e =g =y —Geg — [ &g )ds) I+ 1l g ) Il ds

¢ o
=d, 0 o0 = [ gl Hds)+ [11 g8 ()] ds
1y

X6
0y

Sdpgo GO +2[llgl () lds

@

Sdyy @ —d G042 g5 () llds

i

<L, +2u, L (1+k).

Next, by induction, we can define for

1=0,1,2,..,2" =1 and for 7 €[t/ ,¢",],

R ©
u, () =x] +—[x/ = (] = [ g/ &)s)=[ g/ ()ds,  (12)
where
X =proj e G = [ gl ()ds), a3
o

gl el ([t 1/ LH), gl ) eF(t,7(5,t)u,), telt/ ], (14)
and

1
Hg,"(t)—h(t)Hid(h(t),F(tJ(ﬁ,,(t))un))+7, a.e.telt 1] (15)

Let us show that x',, given by (13), is well

define. By construction one obtains

tly
dr(z,”,y.x,”)()C ‘” - ... g’” (S)ds)
<dpy GO+ [llgl)lds
Qd G =d o GO+ Nl () lids

Sy )y G | L2, O, )XO) | ds

SLyp =t 1 HLy lx[ =x [ [+, Ly lu, (6, ¢ ) D
S [Ly+ Ly (AN Ly (] = - (16)

Also, we have
e =x lisllef =Gy =, @D T+, €7 @D
=dr o = 1,80 @)+ Ly k)
Sy D 181 [+, LK)
<d x')-d G2 L1+ k)
<ty (Ly+ 2L, 1+ k) + Ly [|x) —x [, || a7

T X)) T/ x )

By induction, from (11) and (17) we get

[lx/ =x |l

<p (L + 2L, (14 k) + Ly[pt, (L, + 2L, (14 k) + Ly || x ) —x ] |

=g, (L + 2L, (L RO+ Ly ]+ L2 || x !y —x ) ||

<pt, (L + 2L,k Ly + L3+ L T+ LG |6 =x ) ||

<p (L +2L, (k) Ly + L3 +..+ L + L] (18)

Since L, €(0,1), then (16) and (18) yield,

g1 = [ 87 6)ds)

<pt, (L + 2L, A+ kD +[1+ Ly + L3 +.+ L + Ly + L5

S‘u”(L‘+2L3(l+k))ﬁ4 19)
Therefore, o
N ( g/ (s)ds)<(L,+2L,(+k))———
[NGRETS ;,. ! 3 (l—Lz)z
JL2LO T _p
1-L, 2" 2

As I' has uniformly p-prox-regular values,
by Lemma 1 and (19), x;,, is well defined.
Next, let 1€{0,1,2,...,2" -1} be fixed. By

(12), for almost ¢ €[¢/,¢,] one obtains

1 /vnt\
u O = bl =G - [ el gl ). 0)

From this relation and (19) one obtains

n

I, @+ g7 Ol -l =] - [ &l )as)|l
'

e2y)

i)

1 ., ty .,
<—d G [ gl s)ds)
H, ' ¢

1

S (L + 2Ly (k) T

=7-

2

Now, let g,:I—>H Dbe such that

g,=g'@®), telt',t,),1=0,12..2"-1,

22 '
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g,(T)=g,.(T). Observe that(13) and (20)
imply

—u,(t)-g,(t)e N’

T (O (£) 1y (5 (1))

(u,(6,(t)),ae fortel.
Step 2. In this step, we show that there
are two sequences (g,),., <L'(I,H)

and (u,),, <C(-r.H].H) such that u, is
absolutely continuous on / and

(O, @)=y (), t €[-r,0];
(i), (6,@)) L6, @), (6,()), t €1
@iii)g, (t) e F(t,7(5,(O)u,), tel; (22)

(iV)Hg,,ﬂ(l)—g,,(t)Hﬁd(g,,(t),F(tJ(‘SM(t))“,M))+%, a.etel;
(n+1)

)-uy0)-g,OeN" @, 6,e)NN7BOL, a.c.rel.

Indeed, let h be any fixed element in LI(I JH),
in view of step 1, there are

g, €L(I,H) and u, eC([-,T],H) such
that u, 1is absolutely continuous on I and
the properties (i)-(v) in (5) are satisfied for
n=n,. Now, since - e'(I,H), then, in
view of step 1, there are g, ., €L(I,H)

and u, €C([-r,T],H) such that u, ., is an
absolutely continuous on I and that

@, @)=y (), t €[-r,0];
@i, (6, @) €T, Ou, (5, ), t €l
(iii )8, 1 () € F (1,73, 1 (D), €15 (23

W)1g,,u) =g, Ol<d(g, O).F 705, ), )+

# a.e.tel;
(ny+1°"

@)=t =g, OEN] (0, ODNAB, @t el

So, we can define inductively two sequences

(g, )m0 and (u, )mo such that the properties
(1)-(v) in (22) are satisfied.
Step 3. Our goal in this step is to prove that the

sequence (u, |, )nz”0 has a subsequence, still

denoted by (un | ,)m0 ,
to a Lipschitz function u € C(,H). Firstly,

converging uniformly

we claim that for any n >n,, u, is absolutely
onIand

L +2L,(1+k)

ul )|
ol =

+L,(1+k)=y,, aetel. (24)

Indeed, for any 1=0,1,2,...,2" =1 and any
t,t,e(t',t',), t<t,, one obtains from
(12), (13) and (19)

Lt
H,

Hu,,(tl)_”n(tz)”:

el =Gl = [ gl )ds) [+ g (s)ds)
1 I

t,—t N
<( Zﬂ D@ = [ @l s )+~ )L+ k)

1 (25)
1L +L,(1+k)].

S =)Ly +2L;(1+ k)

2

This means that u, is absolutely on I and

(24) is true. Hence the set {un |:n Zno} is

equicontinuous. Let €/ be a fixed point
and A(t) = {un t):n2> no} . According to (22)

(i), u,(6,())el(0,().u,(5,)), n=n,.
Then

u, () €16, @),u, (8, EN+u, (6,©))~u, @)
<6, @), (5,EM+7,16,@)~1 |
=T, O)u, (8, +74,- (26)

On the other hand, in view of (H2) for any
n>n, andany zeI'(6,(¢) u, (5, (t))) we get
dr(t,u,, @)= dr(gn ()t (S5, (1)) (z) _dl"(t,u"(t)) (@)

SL[6,@) =t |+L, [[u, (5,))—u, (OIS Lip, + L,y 4,
This yields, for

0@,() u,(6,0) = T(,u, () +(Ly,+Ly,um)B,
Vtel.

nzmn,,

This relation and (26) give us, for n > n,
w, (O) €T u, () +p, (7 + L+ Loy)B =T(tu, )+ 4,8, (27)

where #,=u1,(7,+L +L,7,). Now, assume

by contradiction that there is £, € I such
that A(z,) = {un (t,):n= no} is not relatively
compact. Then y(A(z,) >0. Observe that,

for nzny,||lu, ,)|<k+y,l =¢. So, by
(27)

u, (ty) € (Ctyu, ) NEB)+p,B, Vn 2 n,. (28)
Moreover, according to (H3),

x(At,) — (T, A,) ¢B)>0. Then,
we can find & >0 such that
2(A(t)) = 7T, A@¢,)NEB) > 2. (29

Let N, be such that n, <N, and that ;¢
"2
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Vn=N,. So by using (28) and (29) one
obtains

2AW) = 7, (t):n 2N })
< 7Tty fu, (t)):n 2N DNEB) + (U, B :n 2N })
< ATl AU)INEB)+E < 2 (At) -26+E = (A(t,)-E,

which is a contradiction. Therefore, for any

tel, the set {un(t):nZnO} is relatively
compact. By applying Th. 4, Ch. 1 in (Aubin,
and Cellina,1984), there is a Lipschitz
function u:1 — H , such that the sequence
(u, |;),5,, has a subsequence, still denoted
by (u,1),s,,» converging uniformly to u.
We extend the definition of u on [-7,7] by
putting u(t)=y(t), t€[-r,0]. Thus (u,),.,
converging uniformly to u on [-r,T]. In
addition, by (3.18), the sequence (u,),s,,

is uniformly bounded in L*(I,H). Hence,
without loss of generality, we may suppose

that there is ze L’(/, H) such that u/ — z
weakly in I*(1, H) . Then, for each te 1,

t
u(t) = limu, (¢) = W(0)+ lim [ (s )ds =
. 0

ut
Y(0)+ Iz (s)ds
0
Thus =z, a.e. So, u, converges weakly
to u'.

Step 4. In this step we prove that

u(t)el'(t,u(t)),veel. Let tel. By (H2)
we have

dl'(lu(z))(u<t))Sdr(t,u(l))(un(ﬂn([))-l-Hun(an(t))_un(t)u
S‘ dl'(uz(l))(un (Hn (t )) _dl'(ﬂn (1), (6,(6)) (un (Hn (t )) ‘ + H un (011 (t )) _un (t) H
Sy 6,0t 4L,y G, 0=, e) |+, €, 6) -, )]
As n — oo, the right hand side tends to zero,
hence u(t) e I'(¢,u(t) .
StepS. In this step we show that the sequence
(z(5,(t) u,),s,, converges to z(Hu, for
every tel.Let tel.Wehave

lz(3,®)u, —7(t)u “C,, ([-r,0)
NS, O, —t@, e, ooy 17O, =@t e, (r 0
< sup lu,(6,@E)+s)—u, ¢ +s) | +1lz@, =@ llc, (0

-r<s<0
< sup ”un (s1) —u, (Sz) ” + “ T(t)u,, - T(t)” ”c” [-r.0])
~r<s;<s,<1

Is1=s2l<—
n

< sup lu,(s)-u,(s,) I+ sup  lu,(s)-u,(s,)l
-r<s5,<5,<0 —-r<s;<0<5,<1

hrsz|5; b|’51|5;
+ sup ”u,, (s1) —u, (sz) ” + ” T(t)“ﬂ - T(’)u ”cH ([-7,0])
0<s,<s5,<1
|~Yr~‘z|5]_
n
< sup [[W(s)=¥(s,) I+ sup [lu,(s)-u,(0)]+
—-r<s,<5,<0 -r<s,<0

"‘I_Sllsl Ls,|sl
n n
+ sup [|u,(s))—u,(0) ]l
0<s,<1

+ sup ”u,,(sl)_u,,(sz)”+||r(t)u,,_T(t)u“c"([_,,o])

0<s,<s5,<1

bi-sals -

< 2sup ||¥(s)-¥(sy) I+ 2sup |lu,(s)-u,(s,)l
~r<s;<5,<0 0<s,<s,<1
bi-salss: by-salss;

+ ”r(t)”,, _T(t)“ ”cH (XU
By the continuity of ¥, the uniform

convergence of wu, towards u  and
the  preceding  estimate, we  get

lim| 7(6,(t) u, —7(H)u|=0
Step 6. We show that the sequence

(f)nzn, » defined by f,(1)=g,(5,(t) , tel
converges almost everywhere to a function

fel(I,H) and f(t)e F(t,z(H)u), a. e.

tel. To prove this, let n=n, and tel
be a fixed point such that (23)(iii), (iv) are
satisfied and the function m is finite almost
everywhere. In view of (H4) we have

g0 @) -2, @) =d(g, O F . 7(5, 1Nty )+ —
(n+1)

< R(F (28, ) F (€7, (O )+ ——
(n+1)
1

(n+1)*"

<m@)||7(8, ., —7(5, e, ||+

Thus, for any two natural numbers

n,q (n, <n<gq) we infer that
lg,0)-8,0)[F8,0)-g,a0)+]18,40)- 8, 0) +.+ ], )-g,0)]
ST (5O () TR N 19 T K O () TR 4 C N 13 TS

n

ot 108, (0O, =06, (0, 14~
(n+1)
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Since lim¢o,(f)=t, m is finite and
n—»0

(z(6,(t) u,),s, convergesuniformly to z(¢)u
, then the right hand side of the last inequality
tends to zero when. n,q - © Hence, for almost

tel, the sequence (g,(t) ,», is a Cauchy
sequence in H. Thus there is a function

f:I—>H such that limg (t)=f(?), a.
e.tel.
Observe that, by (H5) we have for almost

tel,

g, @< L;(1+7(5, O, (0) = Ly(1+u, (6, ()) < Ly(1+ [ Y (O) | +7.T ).
Then, feL'(I,H). It remains to show that
f(@)e F(t,z(t)u), for a.e.t € I . Indeed, for

every n=>n, and f €/, we have by(HS)

d(f @),F@,r@u) <f €)-g,@)[|+d (g, ). F,r()u))
@) =g, Ol +h(F @, 7(5,Om,), F @,z w)))
f @) =g, Ol +m @) 7(6, @, 7@ ]|

Since g, converges to f almost everywhere
and since m is finite almost everywhere, then

by step 5, we conclude that f(¢) € F(¢,7(t)u)

,ae tel.
Step 7. In this step we show that:

-u'(t)-f(t)eN w@)), a.e. tel.

INGTO)]
We apply the technique used in (Castaing, et
al. 2009). Using the facts that (u))

nzn

Converges weakly to u" and f,(f) converges
almost everywhere to f, and by Mazur’s
Lemma, we get

—u'()~f (1) € [\ Cot=(u (0)~/, (t):k =n}, (30)

For almost €. Let t €l such that (30) is

satisfied and ve H be a fixed point. So

<v,—u'(t)— f ()= infsup <v,—u, (t)— 1, () >
nz2 gsp

From this inequality with (5)(v) and Lemma
1, one obtains

<v,=u'(t)=f ) ><limsup o <v,7,0"dy g ) 5,00 @, G, ON > (B

Next, let us show that T" is continuous.

Indeed, for any (¢,,x,) (¢,,x,)elxH , and

any z €I'(¢,x,) we have
dl"(tz,xz)(z) = dr(rg,xl)(z)_dr(f,,xl)(z) KLt =t |+L, ] x, = x| .

This means that

zel(ty, x,)+ (L |, =t [+L, | X, —x [)B.
Hence,

I, x)clt,,x,)+ (L |t, =t |+L, | x,—x|)B
By interchanging the role of I'(¢,,x,) and
I'(¢,,x,), we conclude that I' is Hausdorff

continuous. Therefore, in virtue of Lemma
2, the relation (31) yields

<v,—u'(t)— f(t)>< o<V, }/lapdr(,‘u(,» (u(t))>.
Since u(?) e U'(Z,u(t) | the set

0"dy 0y u(?) is closed convex, hence we
obtain

—u ,(t)_f (t) € ylanr(t,u(t)) (u (t )) c le(t,u(t)) (u (t )) °
Again, since u(t)el'(¢t,u(t) , Vtel, then

Nf(t,um (u(®) = Npgu W) ,Viel Thus,
—u'(t)e N W'(@) +f(t) ae tel

T (t,u(r)

2.Existence result of solutions for the
problem(3).
Theorem 2. Let H be a real separable Hilbert

space, K:IxH —2" be a multifunction
with nonempty closed uniformly p-prox-

regular values and F:I/xC,—2" be a
multifunction with nonempty closed values.
In addition to the conditions (H1),(H4) and
(H5) we assume the following conditions:

(H6) There are two constants S, >0
and f,>0 such that for all ¢#,se/ and
x,u,ve H

| dK(t,u)(x) - dK(s,v)(x) <Blt=s|+p,|u—v]|.
(H7) For any t € I and any bounded subset
A in H with ¥(A4) >0 and any » >0 one has.
(K1, A))rB) < x(4)

Then, for each WY, ®eC,  with
Y(0) eC (0,D(0)), there are two continuous

functions u, p :[-»,T]— H such that u and
p are absolutely continuous on I and (3) is
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satisfied.
Proof. Let n,>2 be such that
(un)nznl) g C([_r’ T]’H) (pn )nZno g C([_r’ T]ﬁH)

Using the same lines of first two steps in the
proof of Theorem1, there are three sequences

(B4 ok + L1 | 0| +4T ) < 2. (32)

and (g,),»,, € L'(I,H)such that:
p,t)=®)andu, (t)="Y(),fort[-r,0]
and for t€[¢/,2",], i1=0,1,2,...,2" -1,

P, =p, @)+ —1")x], (33)

17
w,(t)=x"+

ol - [eran-[ereus. G4

where

(4
xg =), x=proj (= [ gl (s)ds), (35)

1P (tF50)

gl L[t 1] 1. H)g! (1) e F(t,7(5,0)p,), ae.t €t/ t],], (36)

and

g,(0)=gi @), telt 1) g,[I)=g, T). 37)
1
Hgnﬂ(t)_gn(t)HSd(gn(l)aF(l)T(5n+1(t))pn+l)+7z’ ae.tel. (38)

Let us show that x},, given by (35), is well

define. By construction one obtains for

i=012,..,2" -1

Dicimaniny &7~ I g/ (s)ds)

= dk’ lopn (t ))x ;, + .‘- I g’” () lids (3 9)

=y E =y F 24, Ly | 2E) P, (0) 1)
< B, + By |l P @) =, @) |+, Ly (1 || 2@ p,, () [])
< Bty + Potty 1x ! | +2, LA+ p, @) D

Moreover,
I, € Ep, )+ =t 18], ) + (= e [+ =

PO =ty e )+ =7y oot =177 |
< @(0)||+kT (40)

Therefore,

l»”rl
&0~ .[ 8/ (s)ds)
4

S Bty + Bopt e+ g1, Ly (|| ©0) || +KT')
= 4,18+ Bk + Ly (|| ©(0) || +4T )] (41)

So,

'y
dk(t,’&. P ) S .[ g/ (s)ds)
ol

< (B, + Bk +Ly(1+ || #(O) || +£T ) 2T < § <p. (42)

Thus, the uniformly p—prox-regularity of
the values of K and Lemmal, ensure the

existence and uniqueness of x7', .

Now, let us show that there is 77, such that
forany n>n,, |u (t)—g,(t)|<n,,a.e. Let
i€{0,1,2,...,2" =1} and n>n, be fixed. By
(34), (37) and (41) for almost ¢ €[t ],

llu,@)+g! @)=

1, .
llx/ =G = [ gl s)ds Nl
H,

1, .
S——llx/ =) — [ gl (s)ds) |l
£, b
U
£, y
S B+ Bk + LA+ || DO) || +£T ) :=1,. (43)

Moreover, by arguing as in (25) we can show

[
Dty aran & l - .[ g/ (s)ds)
o

that u,,n > n,is absolutely continuous and
| u (t)|<n,, for almost ¢ € I, where.

0y = B+ Bk + L, (14 || 9(0) || +KT) + Ly (14 K)
Observe that, by the construction, for all
n=n, and for almost € /

- (t)-g,(t)eN (,(0,)\nB, a.etel. (44)

K (0 ()0 (G (1))
Next, Let te/. Then, Vn=n, there is
i=012,..,2"—-1 such that
Hence,

Pa©)=p, )+ =1, ) = p, )+ =, () + (= u, ()
=)+t =t u, (g )+ =1, (O )+ =t () + (=t e, ()

te [1;,1;1+1].

o n
)

=@(0)+ [u, (8, (s))ds + [u, (6, (s )ds +...+,fu” (6, (s))ds + ju (6, ())ds

1

h "
| i

:<D<0>+[jun<6”(s>>ds. (45)
Let us divide the rest of the proof into steps.
Step 1. In this step, we prove that the sequence
(u, |;),5,, has a convergent subsequence, still

denoted by (u,, |;),5,, »

to a Lipschitz function u € C(I,H). In fact,
since ||u! (¢)||<n, , for almost ¢ €1, the set

converging uniformly

{u,|,;:n=n,} is equicontinuous. Let te€/
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be a fixed point. From (H6), one obtains for
every n2n,

K(6,@).p,6,1))
cK@.p,O)+(B16,@)=t |+, p,(6,0)-p,) DB
g K(t,pn(t))+ﬂl/unB

This relation together the fact that
u,(0,(0) €K(0,t) p,(0,1), tel yields
u (t)e(K(t,p,(O)NRB)+p, (B, +k +n,B+k)B,¥n2n tel, (46)

where R 5| ¥(0)||+T'n, . Let £ >0 .
Since limu, =0, we can find a

n—0

natural number N, 2 n, such that

&
< e —
208, +k +m,)
(46), u,(t) = (K(t, p,(0)NRB)+5/ B
Vn 2n,. Hence, by (H7)

U, , Vn2N,.Then by

Z{u,,(t):nZN(,}S;{(K(t,{p,,(t):n2Nn}ﬂRB)+ng
S)((p"(t):nZNo}+%

S;({].u"(s)ds:n ZNU}-FVSZ]‘}({MH(S)LISIYI 2N0}+%.(47)
Since the function — y{u, (f):n=N,}

is continuous, the relation (47) and
the wusual Gronwall’s inequality imply

24, (D)1= Ny} (&) exp(21).
Since ¢ 1is arbitrary, we conclude that

x{u, (t):n=N,}=0. This means that the

set {u,(t):n=N,} is relatively compact in

C(1,E). By applying Th. 4, Ch. 1 in (Aubin,
and Cellina,1984) there is a Lipschitz
function u:l — H , such that the sequence

(u,1;),5,, has a subsequence, still denoted

by (u, ),s,, » Which converges uniformly to
u. We extend the definition of u on [—r,T]
by putting u(¢) =y (¢), [-r,0]. Thus («,),.,
converging uniformly to u on [-r,T]. In
addition, by (4.13), the sequence (u,),.,

is uniformly bounded in L*(/,H). Hence,
without loss of generality, we may suppose

that there is ze L’(I, H) such that u/ — z

weakly in L*(I, H) . Then, for each t €I,

t t
unﬂmm@:W@+mq¢@m:wmnp@m
0
Thus u'=z, a.e. so, u, converges weakly
to u'.
Step 2. Let us define p:[-r,T]—> H as
pt)=d(), for [-r,0] and for t €/,

p(E)=®(0)+[u,(5,(s))ds

Since, (u,) converges uniformly to u on I,

then (p,) converges uniformly to p on .

Step 3. Our aim in this step is to prove that:
u(t)e K(t,p(t) ,Vtel.Let tel.By(H2)
i WO) g0, 6,001+, (6,0)-u, (1)

=0 0, 0, ) = 4,1, 6,00 @, 6, )]

11, (6, @) -u, @)

< B, + By 110, (6,0)=p, O+, (6,) ~u, ()]

As the set K(z, p(t) 1is closed and the right
hand side tends to zero when n — o, one

obtains u(t) € K(¢, p(¢t) .

Step 4. By arguing as in steps 5-7 in the proof
of Theorem 1, we can show that the sequence

(7(5,(?) P,),s,, converges to 7(5(t) p, for

every t € I, the sequence (g,),., converges

almosteverywhere toa function f € L'(I, H)
with  f(t)e F(t,7(¢t)p), ae. tel and

—u'()= f(1) € Ny ooy (D)), a.e. tel.
This completes the proof.

DISCUSSION

In this paper, existence results of solution
of functional sweeping processes of first
and second order in Hilbert space with
noncompact  perturbation have been
established. Some sufficient conditions
have been obtained. The importance of
this work is the values of the perturbation
are not necessarily compact. Moreover, the
values of the moving set are not contained in
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a fixed compact set. We would like to refer

that, in order to show that the sequence («, )
has a convergent subsequence, (Castaing
et al., 2009) assumed the condition: For any
bounded and for any convergent sequence

(¢,) in I =[0,T] and for any bounded set

AcHthe set U{K(,,x):n>lLx eAd}
is ball compact. It is easy to see that this
condition implies (H).
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