خصائص بعض الأفاق تحت السطحية لأراضي محافظة الأحساء

بالملكة العربية السعودية

سعد بن عبد الله البراك
قسم الأراضي والمياه، شركة العلوم الزراعية والأغذية، جامعة الملك فيصل
الأحساء، المملكة العربية السعودية

الملخص:

أجريت هذه الدراسة بعرض التعرف على الخصائص المورفولوجية، الفيزيائية والكيميائية للأفاق تحت السطحية في قطاعات بعض أراضي محافظة الأحساء، مع الرغبة في مقارنة هذه الخصائص بعض الطبقات الموجودة في أحد التكتونات الصخرية التابعة لتصعوب الهواء.

أظهرت النتائج أن خصائص بعض الأفاق تحت السطحية متأثرة بخصائص بعض الطبقات المتحكشة التي قد تمثل مادتها الأصلية. حيث تمثل هذا التأثير في خصائص التدرج اللوني، درجة اللوحة ونسبة الطين والرمل. كما أثبت النتائج أيضًا أن نسبة الطين في الأفاق ذات التدرج اللوني (7.5YR) كانت أعلى حيث تراوح متوسطها (26%) بينما كانت الأخفض في الأفاق ذات التدرج اللوني (2.5Y) حيث وصل متوسطها إلى (16.4%) مما ساهمت الأفاق ذات التدرج اللوني (5Y) أصغر ملوحة من الأفاق ذات التدرج اللوني (7.5YR).

يُركز البحث على أهمية التوسع في دراسة الأفاق تحت السطحية والطبقات التابعة لتصعوب الهواء، بدءًا من مواد طينية منخفضة اللوحة، للاستفادة منها في تحسين قوام الأراضي الرملية المنتشرة كثيراً في أجزاء المحافظة.

مقدمة:

تعتبر محافظة الأحساء وعاصمتها الهفوف إحدى المحافظات الرئيسة إمارة الهمدانة

المنطقة الشرقية من المملكة العربية السعودية وتبعد الهفوف نحو 70 كيلومتراً عن الخليج العربي كما وتبعد عن مدينة الظهران نحو 120 كم. هذا يبعد محافظة الأحساء شرقاً الخليج العربي ودولة قطر وغرباً صحراء الدهدوة وشمالاً مدينة بقيق وجنوباً صحراء
الجافورة المتصلة بالرياح الخالى (عيد، 1399 هـ)، وتضم المحافظة عدداً من الواحات أهمها
١. واحة الأحساء.

شامل : (١) خارطة تبين مواقع الدراسات السابقة إضافة إلى الدراسة الحالية بقبة القارة

المصدر : وزارة الزراعة والمياه، ١٩٨٠م

وبما أن هذه الدراسة تستنسل أراضي هذه الواحة نفسها إضافة إلى الأراضي المحيطة
بها لهذا فإن المساحة التي تستنسلها تتبع بين دائريتي العرض ٠° ٠٥ و ٠° ٠٨ شمالاً
وخطي الطول ٠٠° ٠٥ و ٠٠° ٠٦ شرقاً (شامل ١)، على اعتبار أن هذه المساحة تضم
غالبية أنواع الأراضي والوحدات المورفولوجية المنتشرة بمحافظة الأحساء. ورغبة في توسيع قاعدة المعلومات المتعلقة بالأفقيات تحت السطحية الموجودة بقطاعات أراضي الأحساء تشمل بكافة أرجاء الواحة وما حولها، فقد تم أخذ ما تم الحصول عليه من نتائج تلك الأفقيات وكذلك من الدراسات السابقة التي قام بمعظمها الباحث وغيره من الباحثين عن واحة الأحساء، وما حولها بهدف الوصول إلى بعض الاستنتاجات حول خواصها المختلفة بعد إخضاعها للمقارنة والتحليلات الإحصائية المماثلة. لذا فإن هذا البحث سيتناول دراسة الخواص المورفولوجية، الفيزيائية والكيميائية للأفقيات تحت السطحية لبعض القطاعات الممثلة لأراضي الأحساء، بهدف التعرف على علاقة هذه الأفقيات بعض الطبقات الموجودة في التحصينات الصخرية التابعة لتكوين الخفوف العلوي.

الدراسات السابقة:

1. جيوب مورفولوجية محافظة الأحساء:
من الملاحظ أن الدراسات الجيومورفولوجية المتعلقة بشبه الجزيرة العربية تعتبر قليلة جداً مقارنة بالدراسات الجيولوجية ويمكن القول أن عددًا من الوحدات الجيومورفولوجية العامة بالمنطقة موجودة بصورة جزئية ضمن محافظة الأحساء، والتي تكشف منطقة الأحواض الرملية وحضبة الصمان ومنطقة السهل الساحلي للخليج العربي (Chapman, 1978) إضافة إلى الوحدات المحلية الأخرى مثلاً الواحات والسهول.
تشمل الواحات الجزء الهام من منخفض الأحساء الذي يتألف بصورة عامة من سهول متموجة لا تتجاوز ارتفاعها في معظم الجهات 150 م فوق مستوى سطح البحر، والتي تتدفق بالدرج نحو الشرق والشمال حيث تتكسر به التلال الصخرية المعزلة والأودية لاسيما في الغرب والمنخفضات وأجزاء من الصخرين الرملية.

هذا وقد أضاف (Hotzl et al., 1978) أن الأحساء تقع بين صحراء هضبة الصمان الصخرية في الغرب والصخرين الرملية التي تغطي السهل المحاذي لها في الشرق. وتتألف هذه الهضبة والتي تمتد من بقيق (شمال شرق) حتى حرش (جنوب غرب) من معقد رسوبي من
الطبقات الصخرية العائدة لعصري الميوبسين الأعلى والبليوبسين الأدنى حيث تتشكل الطبقات العليا بدرجة واضحة في الجروف باتجاه الشرق بالقرب من الأحساء، تم تحديد الوحدات الجيولوجية الموجودة، مع المحافظة الأحساء على النحو التالي:

- جروف صخرية وجبال.
- أراضي غير مستوية صخرية مارلة.
- سهول رملية غير مستوية.
- سهول رملية من المنحدرات رملية.
- سهول رملية متداخلة وجبال وجبال السهول.

الواحة (1980) وتوجد أن الطبقات الصخرية المختلفة التي تظهر في الجروف الصخرية والجبال وسهول البيضومنت يمكن أن تتمثل مواد الأصل للكثير من أراضي الأحساء إلا أنها لم تحظ بدراسة تنبت خصائصها الجيولوجية أو محتواها من الطين أو من الأحماض الذائبة، وإن بجانب ذلك من دراسات فقط وصف للطبقات الموجودة في بعض الجروف والجبال الموجودة بالأحساء كجبيل القارة ومن ذلك ما ذكره شابمان (1978) من أن جبل القارة يقع على بعد 10 كم شرق البحرين ويفتقو مساحة 17 كم² ويمثل هذا الجبل أحد البقايا المواجهة لبحيرة الصمان ويعتبر 270 كم محيط به ويبلغ ارتفاعه عن سطح البحر 50 م ويتالف من مدار وحجر رملي مارلي، تابع لتكوين البحرين والذي يعود عهده إلى العصر الميوبسيني الأعلى والبليوبسيني، وهناك طبقات من السلط ويطن تداخل ضمن الحجر الرملي تتميز بالنواحي الصفراء والبحرية التي يعتقد أنها تمثل حريرات دقيقة من أصل نباتي هي جذور نباتات الشورية (Hussain, et al, 2001) (mangrove)

لقد تم وصف تحكيم البحرين من قبل 1935 (powers et al, Steineke and Koch, 1966) على النحو التالي:

- تكوير البحرين: فذي الشكل وغير متباين أو متجانس، إذ تغير ليكولوجيته وسماكته
وتبلغ سماكته في المقطع النموذجي 95م يتألف من الأسلف حتى الأعلى من أربع وحدات
ليثولوجية هي:
1. سكوانوميرات متواضعة اللون تتكون من جلاميد وحصى من الحجر الجيري أو السيليس
مجموعة قاعدة سيليسية رملية الطبيعة بيضاء اللون سمكها 19م.
حجر رملي جيري أبيض اللون يصبح حجر جيري كالسكرينيتين رمادي اللون يبلغ
سمكه 18م.
2. تناوب من حجر رملي طبيعي رمادي فاتح اللون تخلله سويات رملية غضارية حمراء
اللون وبلغ سمكها 14م.
3. سكوانوميرات رملية إلى مارلي رملية رمادية اللون حاوية على جلاميد من الحجر
الجيري بيضاء سمكها 9 أمطار

2 مواد الأصل والآفاق تحت السطحية:
نشأت أراضي الأحساء من رواسب متعددة ترسبت خلال فترات جيولوجية متعددة
باستخدام بعض العمليات الجيولوجية المختلفة. فالعديد من متاح نجد أن الأراضي الرملية
تسود من الأراضي الطينية مناطق البحريات الزراعية، بينما تسود الأراضي الطينية في مساحات الحجر
الطيني، ونطرأً للكشاور منخفض الأحساء، يحتوي من سهل متوسطة ودبيان، تتوسط فيه
واحات الأحساء، عليه يمكن القول أن مادة الأصل لأراضي الرياحة الرياحية المزروعة بالنخيل هي
بصفة عامة رواسب وديان إذا ما صح الافتراض أن جزءاً كبيراً من الرياحية مكاناً وادياً فيه
الزمن القديم امتلاً برؤوض الوديان (1980،)

إلا أنه يصعب التعرف على نوع مادة الأصل الخاصة بأراضي الرياحية المزروعة نظراً
لمرور فترة زمنية طويلة على استغلال الإنسان لهذه المنطقة، وموازيد الأمن بنوعية، إقامة
المزارعين بصورة مستمرة على إضافة الأراضي العضوية المنحتة على نسبة عالية من الرمل
إلى مزارعهم، وعليه فإن مادة الأصل للأراضي المزروعة بالرياحية لا تعود أن تكون محلية
متبقية أو رملية أو رواسب وديان أو خليط من هذا وذاك، مع الأخذ به الاعتبار أن بعض
نصوص بعض الأفلاط تحت السطحية لأراضي محافظة الأحساء

فازع واحة المزروعة حاليا بتعنيف كانت في الماضي مدنًا والعكس صحيح (البراك، ١٤١٤هـ).

بلاطمة أن الدراسات البيولوجية السابقة المتعلقة بمورفولوجيا ونشأة وتصنيف أراضي
الأحساء لم تركز على خصائص الأفلاط تحت السطحية لقطاعات تلك الأراضي بشكلٍ من
التحليل، بل تناولتها بصورة عرضية، فمعظم هذه الأفلاط والتي هي أشبه بالطبقات،
tتميزة بأنها متلمحة وتنتشر تحت ظروف متفاوتة من الطيوع وارتفاع ونطاق النباتي والظروف المناخية. وهذه الطبقات عدة صور وتواجهها بسبب مشاكل زراعية
مقددة أهمها المشاكل المرتبطة بعمليات الخروف تحت السطحية وصعوبة اختراق الجذور
النباتية وسوء التهوية ومن ثم التأثير السيئ على إنتاجية المحاصيل.

هذا ويطلق اسم Pans على الافلاط وطبقات التربة المدمجة بقوة أو المتلمحة أو
المتحوية على نسبة عالية من الطين (Winter and Simonson، ١٩٥٥) وهذه الطبقات إذاً أن
تكون طبيعية تكون بها جيولوجيا أو بيئة طبقاً لعمليات التحويل المؤثرات. وهناك
ثلاثة أنواع من هذه الطبقات (Soil Survey Staff، ١٩٩٣) وهي الطبقات المتلمحة بالسليكا
الأولى تعتبر طبقات Fragipan والطبقات الطينية Argipan والطبقات البيشة Duripan
أو أفاق متلمحة حصلية بالحديد أو بالحديد والمادة المختومة أو السليكا أو السليكا
وطربات الكالسيوم أو بيركرونات الكالسيوم فقط بينما تشير الطبقات الطينية إلى
طبقات أو أفاق منضغفة تكون نتيجة لعمليات تحويل كبرية أو تغيرات جيولوجياً من مادة
أصل طبقية. الطبقات البيشة تعتبر نتائج منضغفة على البحيرات السلط أو الرمل أو
الكلاهما فحير نسبتا الطين.

توصل (العقل ٢٥٤١هـ) بدرسته للخصائص الكيميائية والبيولوجية لبعض الظواهر
المورفولوجية بتراب الأحساء إلى أن ترب الأراضي غير المستوية الصخرية تعتمد بوجود
طبقات تحت سطحية شديدة الصلاحة تختلف بينها ومختلفاتها مع انتشار العقد
أو التجمعات الدائمة اللون حيث وجد أن محتواها من الأملاح منخفض بينما محتواها من
الجبس مرتفع مع كميات من أكساسيده الحديد المتبولة والمواد غير المتبولة للسليكا والألومنيا والتي تساعدها زيادة تصلب الطبقة وظهورها باللون الداكن.

وأضاف بأن الطلقات المتصلة تحت السطحية يغلب على تكوينها وجود الجبس والجيري مع وجود المواد غير المتبولة للسليكا وأكساسيده الحديد الحرّة بكميات أقل، هذا ويرتبط تكوينها بأصل القطاع البيولوجي أكثر من التكوين البيولوجي.

أجريت دراسة على أفرع كبيرة تشمل بعض الطلقات المتصلة الموجودة في أراضي محطة الأبحاث والتجارب الزراعية بجامعتهم الملك فيصل على اعتبار أن وجودها يعني تقريباً عمق التربة المتوفر لزراعة المحاصيل المختلفة حيث توجد أن عمق تلك الطلقات يتراوح بين أقل من متر إلى ما فوق 3 أمتار في أراضي تلك المحطة كما تم تقدير معدل التسرب من تلك الأراضي والذي تراوح بين 10.1 سم/ساعة في الأراضي الرملية Infiltration rate والطنين على التوالي (Hussain, 1984).

المواد وطرق الدراسة:

تضم هذه الدراسة جميعها نظري والأخر عملي حيث تمثل الجزء النظري في الأخذ بين الاعتبار بعض نتائج الدراسات السابقة الآتية:

1. نتائج الدراسة التي قام بها الباحث حول خصائص بعض الأراضي في واحة الأحساء الشرقية (AL-Barrak, 1990) حيث تم عمل مقطع عرضي طوله 14 كم وكذلك من الجزء الشمالي الشرقي لمدينة الهفوف وحتى جنوب قرية الجشة وقد أخذت عينات من (24) موقعاً على امتداد هذا المقطع العرضي على مسافات بينية قدراها 500 م تقريباً بين حقل قطاع وآخر حيث تم الاستفادة من جميع هذه القطاعات باستثناء القطاعات (0.2-0.14) (شامل 1).

2. الدراسة التي قام بها الباحث أيضاً حول خصائص بعض الأراضي المتباينة بالأملاح في الأحساء حيث درست تلك الأراضي خمس مواقع مختلفة، أخذت قطاعاتها الخمسة بعين الإعتبر (AL-Barrak and Badawi, 1988).
3. نتائج الدراسة التي قام بها (Abdelhai and Asif, 1981) على أراضي محطة الأبحاث والتجارب الزراعية والبيطرية التابعة لجامعة الملك فيصل والواقعة على طريق الهوفة - قطر. ولقد تم الاستفادة من القطاعات ذات الأرقام (8.7.6.5.4.3) (شكل 1).

4. نتائج الدراسة التي قامت بها الشركة الإستشارية الدولية المتعددة لتنمية المياه (Ministry of Agriculture and Water, 1980) حول تصنيف أراضي الأحساء حيث تم الاستفادة من القطاعات ذات الأرقام (1.2.3.6.1.8) (شكل 1).

5. نتائج الدراسة التي قام بها المعلم حول الخصائص الكيميائية والبيولوجي لبعض الظواهر المورفولوجية في أرض الأحساء (العقل، 1422 هـ) حيث تم الاستفادة فقط من القطاعين الثالث والرابع (شكل 1).

تم تحديد واختيار تلك الأفاق على ضوء المعايير التالية:

1. اللون على اعتبار أن لون الأفق له ارتباط بلون الطبقات المحكشة الموجودة في التلال المحيطة والتي لم تتعرض لآي الأغب إلى تجوية كيميائية بدرجة كبيرة. فالأفاق تحت السطحية التي أخذت بعين الاعتبار يعتقد أنها كانت أقل عرضة للتجوية مقارنة بالأفاق السطحية التي من المعتقد أنها كانت قد تعرضت لدرجة أصغر من التأثيرات الناتجة عن فعل الإنسان مثل الحراثة أو الري أو التسقيف والعمليات البيدوجينية الأخرى.

2. نسبة الطين.

3. درجة المقاومة.

وعلى ضوء ما ذكر أعلاه يمكن اختبار أو تحديد العينات الممثلة لتكلفة الأفاق تحت السطحية من بين مجمل العينات التي أخذت بعين الاعتبار في الدراسات المشار إليها. وتم وضعها في أربع مجموعات حسب درجة التدرج اللوني الخاصة بشكل أفقي كما هو موضح في الجدول (1).
أما الجزء العملي من هذه الدراسة فقد تمثل في دراسة بعض الطبقات الموجودة في بعض التحصيفات الصخرية التابعة لتكوين الهضف والمتمثلة في التتابع الطبقي أو الطبقات المشكلة في الوجه الجنوبي من جبل القارة حيث تم الاستعانة بخريطة جيولوجية للوجه الجغرافي (Steineke et al., 1958) بالملحية العربية السعودية باستخدام جهاز تحديد المواقع GPS على النحو التالي (خط عرض 23°20′32″ شمالاً وخط طول 94°49′ شرقاً.

وصفت الطبقات مورفولوجياً طبقاً للإيضاحات القياسية المذكورة في (Safarjalani, 1993) كمضاة تم الاستعانة بالوصف الخاص بالتشابه الطبيقي لتكوين الهضف من أحد البحوث المقبولة لنشرها في جامعة الملك فيصل بالإحساء (Safarjalani, 2005) كمضاة وهو مدون في شكل (2).

رغبنا في إجراء مضاة مبديئية بين الطبقات التي تشكل منها جبل القارة والوصف تحت السطحية للقطاعات المدوية تم اختيار عدد ضخم من القطاعات القريبة من جبل القارة و التي تم دراستها ضمن الدراسة الأولى المتمثلة في القطاعات أرقام 19، 16، 11 ذات التدرج اللوني 5Y 2.5 بالإضافة إلى القطاعات أرقام 18، 17، 15، 12 ذات التدرج اللوني 5Y (جدول 4).

تم اختيار جبل القارة كأحد التحصيفات الصخرية لتكوين الهضف حسباً أن هذا التحصيف الصخري يبرز على السطح لأرحال الأحاسيس والعديد من المواصفات وعلى اعتبار أن جبل القارة قد حظي بالتحكير من الدراسات إضافة إلى صورة خط الدراسة الأولى يمر بالقرب منه (2.2 كم جنوباً).

تم جمع عينات مناسبة من الطبقات المستوفية من أجل التحليل العملي وتم تجفيف العينات هواياً وطلعها للإيضاح من الجيوبتحويل الأكبر من 2 للمليماً. تم إجراء التحليل البيئسي باستخدام الهيدرومتر (Day, 1965) وتم قدر رقم الحمضة pH المستخلص في ECE الصمحة المشبعة باستخدام جهاز pH meter كمضاة قدر التوصيل الكهربائي pH meter وتم قدر pH الحمضة using Day's pH meter
المستخلص التربة المشبعة (Rhoades, 1982) تم تقدير كربونات الكالسيوم الحكائية بالطريقة الوزنية (Allison and Moodie, 1965) حسب تقدير الجيسي بطريقة التهجيف بواسطة الأشعة تحت الحمراء (Elprince and Turjoman, 1983).

![Diagram of soil layers and color codes](image_url)

शेयर: (2) المستويات التي اخذت منها عينات الدراسة من الوجه الجنوبي لجبل القارة (Safarjalani, 2005)

المصدر: (2005)
النتائج والمناقشة:

تم تدوين نتائج التحليل الفيزيائية والكيميائية للأفاق تحت السطحية لقطاعات أراضي واحة الأحساء وتدرج الطبيقي للوجه الجنوبي من جبل القارة في الجداول (1 - 2). يتبنين من خلال المتوسطات الحسابية لأعمق تلك الأفاق أن الآفاق تحت السطحية ذات التدرج اللوني Y 2.5Y تتوافق على أعمق أثضاف من الأفاق الأخرى تليها الأفاق ذات التدرج اللوني Y 5Y وY 7.5Y (جدول 2). فقد تراوح تلك الأعمق بين 110 سم في الأفاق ذات التدرج اللوني Y 2.5Y إلى 63 سم في الأفاق ذات التدرج Y 5Y ونسبة 5Y 2.5Y 5Y وY 7.5Y للقطاعات القريبة من جبل القارة (جدول 4) بالترتيب الذي تتواجد عليه الطبقات ذات التدرج اللوني Y 2.5Y وY 5Y بالترتيب الطبيقي للوجه الجنوبي من جبل القارة (شكل 2 وجدول 2) تجد أن المتوسط الحسابي لبعض الأفاق تحت السطحية ذات التدرج اللوني Y 2.5Y أصغر قليلاً من المتوسط الخاص بالأفاق ذات التدرج اللوني Y 5Y. حيث كان المتوسط في أفاق Y 2.5Y يساوي 15 سم بينما كان المتوسط في أفاق Y 5Y يساوي 12 سم (جدول 4).

مما يعكس شيئًا من التقارب بين تلك الأفاق تحت السطحية وذلك الطبقات مما يعني الحاجة إلى إجراء دراسات مستقبلية تتناول مضاهاة تلك الأفاق المدروسة بنظرياتها الممكنة للتتابع الطبيقي الخاص بجبل القارة.

الملوحة؛ يبين من الجدول رقم (1) والجدول رقم (2) أن متوسط قيم التوصل dSm التكربائي للأشكال تحت السطحية للأراضي المدروسة سكانت أعلى من 4 ECl. وبالتالي تعتبر متاخزة بالأملاح، إلا أن الأفاق ذات التدرج اللوني Y 5Y كانت أكثر سكانت Y 2.5Y حيث الأملاح Y 7.5Y تم الأفاق Y 2.5Y. حيث تراوحت قيم المتوسط الحسابي لها إلى 4.82 ، 26.82 ، 8.88 على التوالي (جدول 2)، بما أن تركز الأملاح في التربة يرتبط عادة بعدة عوامل منها على سبيل المثال محتوى مادة الأصل من الأملاح ودرجة القوام والبناء والتماسك وظروف الري والصرف.
في حكومة التنسيق النتائج أعلاه على ضوء تلك العوامل، فالأشخاص ذا التدريس اللوني يُؤثر في قوامها التناقل مقارنة بالأخرى ذات التدريس اللوني 2.5Y حيث نجد أن متوسط نسبة الطين في الأول هو 22% بينما متوسط نسبة الطين في الثانية هو 16.4% (جدول 2)، مما نجد أن متوسط نسبة النمر في الأول أقل من الثانية مما يعكس صعوبة غسل الأملاح في الأولى نتيجة لسوء الصرف المرتيط باعتباره الانتاجية. علماً بأن هذه الدراسة لم تتناول بقية الخواص المحددة للدرجة الصرف.

يتميز من النتائج الخاصة بطببات جبل القارة الجدول (3) أن قيم التوصل الكهربائي مكانت عالية جداً بين أغلب الطلبات، فيما كنائت الطلبات ذات التدريس اللوني 7.5Y و 5Y أكثر ملوحة من الطلبات الصفراء (2.5Y) حيث وصل التوصل الكهربائي إلى ما لا يقل عن 500 dSm -1 المجموعتين الأول و الثاني. بينما لم يتجاوز التوصل الكهربائي في المجموعتين الثانيتين في الاتجاهemax103 في اجتهاء نسيج أغلب الطلبات الموصوفة على جمعات مختلفة من مبنا الفاح.
رقم الحموضة: تراوحت قيم متوسطات رقم الحموضة (pH) في الآفاق تحت السطحية المدرجة بين 7.5 و 7.7 (جدول 2) مما يشير إلى عدم وجود فروقات كبيرة بين تلك القيم. وهذه القيم تعكس بصورة عامة في مجال النتره المائل نحو القليلة الخفيفة نتيجة لتأثير الأملاح المتعادلة وكربونات الكالسيوم المحافظة على رقم الحموضة ضمن الحد المعتدل تقريباً. أما بالنسبة لقيم الحموضة في طبقات جبل القارة فقد تراوحت بين 6.6 و 7.2 مع تكون معظمها يقع ضمن المجال المعتدل باستثناء الطلقة ذات التدرج اللوني 5Y والتي وصل رقم الحموضة فيها إلى 6.6 أي المائل نحو الحموضة الخفيفة (جدول 3).

التحليل الميكانيكي للحيبيبات: أوضح النتائج أن نسبة الطين في الآفاق ذات التدرج اللوني 7.5YR كانت هي الأعلى حيث وصل متوسطها إلى 36% بينما كانت الأخفض في الآفاق ذات التدرج اللوني 2.5Y حيث وصل متوسطها إلى 15.4% وبعبارة أخرى نجد أنه ضمن الآفاق الصفراء، فإن الآفاق ذات التدرج اللوني 5Y أصفر طبيعي من الآفاق ذات التدرج اللوني 2.5Y بينما نجد أنه ضمن الآفاق الحمراء المصفحة فإن الآفاق ذات التدرج اللوني 7.5YR أصفر طبيعي من الآخرين ذات التدرج اللوني 5YR (جدول 2).

والنظر إلى نتائج التحليل الميكانيكي للحيبيبات الخاص بطبقات جبل القارة نجد أن نسبة الطين في الطلقة ذات التدرج اللوني 7.5Y هي الأعلى حيث بلغت 47% بينما كانت نسبة الطلقة ذات التدرج اللوني 5Y هي الأخفض والتي بلغت 13%. في حين صنعت نسبة الطلقة في الطلقة ذات التدرج اللوني 2.5Y مترابطة مع طبقات 5Y (جدول 3).

ينتبه من النتائج الخاصة بالأفاق تحت السطحية للقطاعات القريبة من جبل القارة (جدول 4)، أن متوسط نسبة الطين في الآفاق ذات التدرج اللوني 2.5Y مترابطة مع متوسط نسبة الطين في الآفاق ذات التدرج اللوني 5Y والتي بلغت 12% و 15% مما يدل بصورة عامة على أن نسبة الطين في الآفاق تحت السطحية في الأراضي واحة الأحصاء ترجع إلى طبيعة وتركيز مادة أمية أصح حسب عمليات التحكم المحلي (جدول 3).
جدول (1): نتائج بعض التحاليل الفيزيائية والكيميائية للأفقال تحت السطحية حسب درجات ألوانها

<table>
<thead>
<tr>
<th>الجيوب</th>
<th>التحاليل الميكانيكي</th>
<th>مستخلص الصحبة</th>
<th>رقم الدراسة</th>
<th>رقم القطاع</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5YR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10.2</td>
<td>7</td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>24.5</td>
<td>47.6</td>
<td>41</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>-</td>
<td>37.8</td>
<td>51</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5YR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>14.6</td>
<td>10</td>
<td>13</td>
<td>7.2</td>
</tr>
<tr>
<td>6.2</td>
<td>20.1</td>
<td>14</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>22.8</td>
<td>33</td>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>4.3</td>
<td>26.8</td>
<td>54</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>0.9</td>
<td>28</td>
<td>10</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1.2</td>
<td>12.0</td>
<td>16</td>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>2.5Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>16.2</td>
<td>49</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>20.1</td>
<td>14</td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>2.3</td>
<td>19.7</td>
<td>33</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0.6</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.7</td>
<td>7.0</td>
<td>16</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>0.8</td>
<td>7.9</td>
<td>10</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.7</td>
<td>12.0</td>
<td>16</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>18.7</td>
<td>17</td>
<td>4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

الملاحظة: الممارسة المطلوبة لا تزهق الطبيعة للاستعداد والفهم.
<table>
<thead>
<tr>
<th>الجنس</th>
<th>الكربونات</th>
<th>التحليل اليميكي</th>
<th>معدل الكلسيوم</th>
<th>الكのような</th>
<th>pH</th>
<th>KcmSm⁻¹</th>
<th>رسم</th>
<th>دراسة</th>
<th>قطاع</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5٪</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۶۰۸</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۲۲</td>
<td>۷.۶</td>
<td>۲۷.۱</td>
<td>۳۱</td>
<td>۳</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۱.۸۷</td>
<td>۲۱</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۷.۱</td>
<td>۱۹</td>
<td>۴۶</td>
<td>۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰.۹۱</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۲</td>
<td>۳.۳</td>
<td>۱۷</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۰.۵۹</td>
<td>۱۸</td>
<td>۱۳</td>
<td>۱۲</td>
<td>۷.۵</td>
<td>۱۷</td>
<td>۱۷۰</td>
<td>۴</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰.۵۶</td>
<td>۰۹</td>
<td>۱۸</td>
<td>۱۷</td>
<td>۷.۳</td>
<td>۱۷</td>
<td>۱۸۸</td>
<td>۴</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰.۷۲</td>
<td>۱۴</td>
<td>۱۸</td>
<td>۱۷</td>
<td>۷.۷</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۱۶</td>
<td>۱۷</td>
<td>۱۸</td>
<td>۷.۵</td>
<td>۱۹</td>
<td>۱۹۰</td>
<td>۴</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>۰.۷۹</td>
<td>۱۵</td>
<td>۱۹</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۰.۷۷</td>
<td>۱۴</td>
<td>۱۸</td>
<td>۲۱</td>
<td>۸.۲</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۰.۵۸</td>
<td>۱۸</td>
<td>۲۰</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>۰.۵۶</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۲۱</td>
<td>۸.۲</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۰.۷۲</td>
<td>۱۰</td>
<td>۱۹</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۱۱</td>
<td></td>
</tr>
<tr>
<td>۰.۷۷</td>
<td>۱۲</td>
<td>۱۸</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۱۲</td>
<td></td>
</tr>
<tr>
<td>۰.۷۷</td>
<td>۱۶</td>
<td>۱۹</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۱۳</td>
<td></td>
</tr>
<tr>
<td>۰.۷۷</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۱</td>
<td>۸.۵</td>
<td>۱۸</td>
<td>۱۸۰</td>
<td>۴</td>
<td>۱۴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5Y</td>
<td>2.5Y</td>
<td>7.5Y</td>
<td>5YR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جميع الأقسام</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جودة التربة</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبة الرطوبة</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبة العناصر التربية</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبة الكربون</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توضيح: الرموز EC، PH، و PHC تشير إلى قيم المسطرة في كل حالة.
جدول (2) بعض الخصائص الفيزيائية والكيميائية لعينات من الطبقات المتحكشة من الوجه الجنوبي لجبل القارة

<table>
<thead>
<tr>
<th>الكبيس</th>
<th>% كربونات المكاسيم</th>
<th>% التحليل الميكانيكي للرمل للنتر للسلت</th>
<th>pH</th>
<th>EC dSm⁻¹</th>
<th>رقم المينة</th>
<th>اللون</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4</td>
<td>42.3</td>
<td>13</td>
<td>72</td>
<td>15</td>
<td>6.6</td>
<td>0.5</td>
</tr>
<tr>
<td>8.2</td>
<td>75.8</td>
<td>22</td>
<td>50</td>
<td>27</td>
<td>7.1</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>22.8</td>
<td>13</td>
<td>42</td>
<td>40</td>
<td>6.6</td>
<td>0.28</td>
</tr>
<tr>
<td>10</td>
<td>78.7</td>
<td>27</td>
<td>49</td>
<td>11</td>
<td>6.7</td>
<td>0.27</td>
</tr>
<tr>
<td>3.1</td>
<td>34.0</td>
<td>12</td>
<td>30</td>
<td>76</td>
<td>7.3</td>
<td>0.32</td>
</tr>
<tr>
<td>0</td>
<td>36.8</td>
<td>15</td>
<td>24</td>
<td>61</td>
<td>7.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
جدول (4) بعض الخصائص الفيزيائية والكيميائية للأفاق تحت السطحية لبعض القطاعات القريبة من جبل القارة

<table>
<thead>
<tr>
<th>الرقم القطع</th>
<th>pH</th>
<th>ECDm^-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>الدراسة الأولى</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2.57</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>المتوسط الحسابي</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>الدراسة الثانية</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>9.9</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>المتوسط الحسابي</td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>
أما بالنسبة للفترة الزمنية فقد كانت منخفضة في الأفلاك تحت السطحية ذات التدرج اللوني 2.5Y والتي بلغ متوسطها 24% بينما كانت مرتفعة في الأفلاك ذات التدرج اللوني 5Y والتي بلغ متوسطها 27% (جدول 2) وهذه العلاقة مماثلة لتلك التي ظهرت بالنسبة للطقس في الأفلاك الصفراء وصولاً إلى حالة حساسية. احتوت الطبقات التابعة لجبل القارة ذات التدرج اللوني 2.5Y على أعلى نسبة من الرمل (11%) بينما تراوحت نسبة الرمل في الطبقات ذات التدرج اللوني 5Y بين 15-20% (جدول 2) كانت نسبة الرمل في الأفلاك تحت السطحية للقطاعات القريبة من جبل القارة ذات التدرج اللوني 2.5Y والتي بلغ متوسطها 55% متناوبة مع نسبة الرمل في الأفلاك ذات التدرج اللوني 5Y والتي بلغ متوسطها 58% (جدول 4).

لقد أظهرت النتائج تقارباً مع احتوائها الأفلاك تحت السطحية ذات التدرج اللوني الأحمر المصفر من السطح حيث سكان متوسط نسبتهم في الأفلاك ذات التدرج اللوني 5YR هو 17.2% بينما سكان متوسط النسبة في الأفلاك ذات التدرج اللوني 7.5YR هو 17.1% أما بالنسبة للأفلاك الصفراء فقد وصل متوسط نسبة 23.7% في الأفلاك 5Y بينما سكانت النسبة 21.6% في الأفلاك 2.5Y. و بصورة عامة أظهرت نتائج السطحية في طبقات جبل القارة نفس النتائج حسبما سكانت متوسط نسبة السطحية في الأفلاك تحت السطحية من جبل القارة ذات التدرج اللوني 5Y أعلى قليلاً منها في الأفلاك ذات التدرج اللوني 2.5Y حيث بلغ 15% و17% على التوالي (جدول 4).

مكروبات الحكاسيم: بصورة عامة سكان متوسط نسبة مكروبات الحكاسيم في الأفلاك الصفراء أعلى منها في الأفلاك الحمراء المصفرة وسكات النسبة متناوبة بين 7.5YR و 21% في الأفلاك 5YR بينما بلغ متوسط النسبة 28.7% و31.6% في الأفلاك ذات التدرج اللوني 2.5Y و 5Y على التوالي (جدول 2).

وعند مقارنة نسبة مكروبات الحكاسيم في الأفلاك تحت السطحية للقطاعات القريبة من جبل القارة بعَتَر طبقات جبل القارة من مكروبات الحكاسيم نجد أنها كانت أخفض بصورة عامة في الطبقات ذات التدرج اللوني 2.5Y و 5Y من متوسط قيمها في

١٩
الآثار تحت السطحية والتي بلغ متوسطها في الأفق Y و 2.5Y و 3/8.5 على التوالي (جدول 3). نراحت نسبة التكرارات للأشكال السطحية في الطبقات ذات التدرج اللوني 2% بين 14.2% و 23.6%، كما بلغت نسبة التكرارات للأشكال الأفقي 16.8% في الطبقة ذات التدرج اللوني 2.5Y مما يعكس تفاوتًا في محتوى الطبقات الصغرى من كربونات الكالسيوم (جدول 2)، وعلى الرغم من أن متوسطات نسب التكرارات للأشكال السطحية في الأفق Y تحت السطحية لأراضي الأحساء كانت أعلى نسبياً من نسب التكرار لشكل كربونات الكالسيوم في الطبقات جبل القارة إلا أن نسبتها في تلك الطبقات كانت أعلى من نسب التكرار في الطبقات الصغرى للأشكال السطحية في الأفق Y تحت السطحية (الجدول 2 و3). وقد يعزى ارتفاع هذا في الطبقات السودة عند الطبقات من J4 إلى تكونها موزعة بصورة أكثر انتشاراً في الأفق Y تحت السطحية وذلك نتيجة لتأثير عوامل وعمليات تحكم التربة المختلفة.

التبين: مكانت متوسطات نسبة العجل في الأفق Y تحت السطحية ذات التدرج اللوني الأحمر المصنوع أعلى منها في الأفق Y تحت السطحية ذات التدرج اللوني الأصفر حيث وصل متوسط نسبة العجل في الأفق Y إلى 9.4% بينما وصل متوسط نسبة العجل في الأفق Y إلى 23.2% (جدول 4). أما بالنسبة للأشكال السطحية的话 الأفق Y تحت السطحية للفشندات القريبة من جبل القارة فقد كن متوسط نسبة العجل في الأفق Y ذات التدرج اللوني Y و 5.1% على التوالي (جدول 4)، أمما الطبقات جبل القارة ذات التدرج اللوني Y و 5.5Y فقد أظهرت تنبذلاً في محتواها من العجل (جدول 3).

الاستنتاجات والتوصيات:

يمكن من خلال هذه الدراسة البحثية الميدانية والأولية التوصل إلى بعض الاستنتاجات والتوصيات التالية:
1. إن خصائص بعض الافاق تحت السطحية لقطاعات أراضي واحة الأحشاء صنعت متوازنة بخصائص بعض الطبقات التابعة لتكوين الهضوب والتي قد تمثل مادتها الأصلية، حيث تمثل هذا التأثير في خواص التدرج اللوني ودرجة الملوحة ونسبة الطين والرمل. 
2. فيما يتعلق بنسب تكربونات الكربون هو فقد صنعت متخفية إلى حد ما في الطبقات المتحكشة مقارنة بالأفاق تحت السطحية أما بالنسبة لحوالي الأفاق تحت السطحية (2.5Y و5Y) من الجيس فقد صنعت متقارباً في الأفاق ذات التدرج اللوني الأصغر (5Y) كما أظهرت الطبقات المتحكشة من جبل القارة تدريجياً في محتواها من الجيس.
3. على ضوء تقسيم الأفاق تحت السطحية لقطاعات أراضي الأحشاء إلى أربع مجموعات حسب التدرج اللوني، فإن الأفاق ذات التدرج اللوني الأحمر المصفر (7.5YR) كانت أكثر طينياً من المجموعات الأخرى بينما صنعت الأفاق ذات التدرج اللوني الأصفر (5Y) أكثر ملوحة من أفاق المجموعات الأخرى أما بالنسبة للطبقات المتحكشة ذات التدرج اللوني.
4. الأصغر (2.5Y و5Y) فصنعت درجة ملوحتها أعلى مما هي في الأفاق تحت السطحية الممتدة لها لوناً.
5. يوصى الباحث بأهمية التوسع في هذا النوع من الدراسات لحصر المزيد من مساحات الأراضي في محافظة الأحشاء للوقوف على الخصائص البيئولوجية لأفاقها تحت السطحية. سيكون النتائج المتحصل عليها أكثر مثيلًا لالواقع مع مراعاة أن تشمل الدراسة مستقبلاً العديد من المواضع التي يبرز فيها المتحكش الخجراً لتكوين الهضوب بواحة الأحشاء حتى تتم عملية الملاحظة بصورة أفضل.
6. الأخبار بين الاعتبار أهمية البحث عن طبقات قريبة من السطح تحتوي على مواد طينية منخفضة الملوحة وبحكميات اقتصادية تأتي باحتجاجات المزارعين المستقبلية من تلك المواد، بغرض استخدامها وإضافتها لتحسين قوام الأراضي الرملية المنتشرة في غالبية أرجاء المحافظة، أو لعمل ترب صناعية مناسبة لغرض التشطيب.
المراجع:
1. البراك، م. 1441هـ. خصائص أراضي الأحساء الزراعية: الطبعة الأولى. مطبوعات الحسيني.
2. العقل، م. 1422هـ. الخواص الكيميائية والبيولوجية لبعض الطوافير المورفولوجية في ترب الأحساء. رسالة ماجستير مقدمة إلى تعلم علوم التربية بجامعة الملك سعود.
3. عبيد، م. 1399هـ. الجغرافيا الزراعية لواحة الأحساء، رسالة دكتوراه، جامعة القاهرة، مصر.

Demetser House, Station Road. Cambridge.
Characteristics of Some Subsurface Horizons of Al-Ahsa Soils, Saudi Arabia

Saad A. Al-Barrak

Soil and Water Department, College of Agric. & Food Sciences
King Faisal University, Al-Ahsa, Saudi Arabia

Abstract:

This research was conducted to study the morphological, chemical and physical characteristics of the subsurface horizons of Al-Ahsa soils with an attempt to compare their characteristics with that of some miopliocene rock strata outcrop (Hofuf formation). Results indicated that the properties of some subsurface horizons were influenced by the properties of some strata beds which may represent their parent materials. Properties such as color hues, ECe and percentages of clay and sand were the most influenced.

In addition, the results showed that the subsurface horizons with 7.5 YR hue had the highest clay content with an average of 26%, whereas those with 2.5 hue with 5Y hue were more saline than those of 7.5YR hue.

Further research work should be carried out in more details to search for low saline clayey materials to be used for improvement of the texture of sandy soils spreading all over the district of Al-Ahsa.