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ABSTRACT

The joint probability distribution of the buffer content and the state of the Markov process controlling the input/
output rates in a stochastic fluid model has been widely investigated. This probability distribution in transient
regime fulfills a partial linear differential system and many techniques of resolution in the literature have been
proposed. But the uniqueness of the solution has been never studied. In this paper, the boundary conditions to
ensure uniqueness were precisely specified. The jumps with specific values in some critical points are necessary to
guarantee the uniqueness of the solution. This work showed also that some methods using the Laplace transform
do not take into account of the discontinuity property leading in that way to different mathematical mistakes
depending on the used approach. Finally, this paper showed that the approach using the uniformization technique

gives the exact solution and its proof is completed.
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INTRODUCTION

Many researchers are interested in the
Markov modulated fluid models, especially
in the numerical computation of the
cumulative distribution function of the fluid
level in a storage device. This distribution
function is governed by a partial differential
system. Different approaches have been
developed in literature to solve this system
of partial differential equations. In this
context, the Laplace transform is widely
used (Kobayashi and Ren (1992), Ren and
Kobayashi (1995), Tanaka et al. (1995),
Ahn and Ramasmawi (2004), Saghouani
and Mandjes (2011)). All these methods
did not take into account the discontinuity
property of the solution. By omitting this
property, different mathematical mistakes
are induced depending on the used approach.
All these mathematical remarks will be
explained in Section 5. Sericola (1998)
adopted the uniformization technique to
have a numerically stable solution. He was
inspired from the performability solution
developed by Nabli (1995) and applied to
a fault tolerant multiprocessor (Nabli and
Sericola (1994) and (1996)) to give a similar
solution for this system. Nevertheless, the
boundary conditions specified in his proof
are insufficient to get the uniqueness. In this
paper, all boundary conditions needed to

achieve uniqueness were precisely described
and the crucial property of discontinuity
was shown. Finally, the proof of Sericola
(1998) was completed to conclude that his
solution is actually the unique solution of the
problem.

MATERIALS AND METHODS

Mathematical model

Stochastic fluid model has been widely
investigated in the two last decades. This
model is used to describe the random
behavior of the fluid level in a buffer when

the input p, and output ¢, are controlled by

a homogeneous Markov process (X,),,, ona

finite state space S. The aim is to compute, by
a numerically stable method, the distribution

of the buffer
content O, for all time ¢ >0. At time 0,

function x > P(Q, >x)

the buffer is supposed empty, that is O, = 0.
It is well-known that the joint probability
distribution F,(¢t,x)=P(Q, >x,X, =i) is
governed by the following partial differential

equations (see for instance Tanaka et al.
(1995) and/or Da Silva Soares (2005)):

aF; (tax) :_d[ aF: (t’X)—FZF}(tvx )Ali’Vi ES
ot ox leS

(1)
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where A is the infinitesimal generator of

the Markov process (X,),., and d, = p, —c,
designates the effective input rate associated
to state i. Since two states may have the
same effective input rate, the different values

of d,; i €§ ; are denoted by r,,r,...,7,,

where m is naturally an integer less than the

cardinality of §. These distinct values are
ordered in ascending order:

vy >0, > >1,>02r > >1>r,.
The state space S of the Markov process

(X,)so can be partitioned into m +1

disjoint subsets B, ,...,B,, where B, is

the set composed by all states having the

same effective input rate 7,. For commodity
reason, let S denotes the subset of all states

having positive effective input rate and S~
denotes its complementary. The natural
boundary conditions commonly used in the
literature are as follow:

E@t,0)=P(X, =i), forieS”
F(t,x)=0,vx2rt, forieS
F(0,x)=0,Vx>0, fories.

(2

The first condition states that the buffer
content @, 1s certainly nonempty when
the process is in a filling state. The second
condition is due to the fact that Q is
upper bounded by r,¢, and the last one
explains the hypothesis 0, =0. The first
two conditions cover the variable x, that
corresponds in reality to the amount of fluid,
and the last one covers the time ¢. It will be
seen in the next section that these boundary
conditions are incomplete to have the exact
solution. All methods of Kobayashi and Ren
(1992), Ren and Kobayashi (1995),Tanaka
et al. (1995), Ahn and Ramasmawi (2004),
Saghouani and Mandjes (2011), which use
the Laplace transform, supposed implicitly

that the function x — F(t,x) is of class
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C'. However, this property is not true. The
author who includes the discontinuity points
and their jump values was Sericola (1998).
Nevertheless, his proof is incomplete since it
does not show that the proposed solution has
really a jump on each critical point. Without
this last condition, we will show that the
problem has multiple solutions.

Recalling the solution proposed by Sericola
(1998) for the joint distribution of the

bivariate (Q,,X,), this solution was similar
to the one proposed by Nabli and Sericola
(1994), and Nabli (1995) for performability
measure. It is interesting to state that the
latter was obtained directly from an approach
based on integral equations and not through
a partial differential system as done in this
study.

RESULTS AND DISCUSSION
Theorem 2.1

For all state i €S , we have:

* Vx €[0,rt)

nz0

_ —At (ﬂ*t)n N n ik _i n—k p(u)
Ftx)=Y e ;(k)%t) (=20 b0 k)
* Vji=u+l,...m,Vx lr, t,r;it)

At = Xe A0S ()0 )8 0

n>0 n.

_ X —rHt
where (r, -r,.)t - The coefficient A is the
uniformization rate of the Markov process

(X)pand b (n,k); u<j<m; are real
sequences, computed iteratively as a convex
combination of two elements in the interval

[0.1].
In the expressions of F(¢,x)mentioned
above, the convention of 0% (which may

happens if x=r_tand k =0) is 0% =1,

Uniqueness

In this section, the boundary conditions of
the differential system (1) were fixed. As
explained above, the discontinuity points of
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the function x = F, (t,x ) will be specified
with their jump values. It is also proved that
these conditions are crucial for the solution
uniqueness.

The amount of fluid O, may be at level r;z

if the driver process (X,),,, remains in the

120

subset B, during the observation period
[0, t]. This ascertainment is mathematically
expressed by:

. Ap gt
PO, =rit,X, =z):a3je e,

where a, (resp. Ay , ) is the sub-vector of

ieeinitial distribution 4 := (P(X , =i),i €8)
(resp. submatrix of 4 ) related to B, and e,
is the ith vector of the canonical basis of
R”' So, for all i €B,, the function
x B F(¢,x) has a jump at point x=r{,

BiB

J

. . Ap 5,
which is equal to a;, e ftel.. On the other

hand, starting from a state i ¢ B i the
amount of fluid O, cannot be at level r;z  (

iePQ, =rt,X, =i)=0, for i¢B;).
Merging the partial differential system (1)
with the boundary conditions (2), the whole
problem governing the joint distribution of

0,.X,) is:

) B S, i S, e0r)
ot [ S

F(t,00=PX, =i),¥ieS"
F(t,x)=0,Vie§,Vx 2rt
F(0,x)=0,Vie§,Vx eR,
vj :u,...,m,JE(t,rjt):O,Vi ¢B,

. Appt .
Vj —u,...,m,JE(l,rjt)—aBje Ve, VieB,

.. 3)
where JF,(¢,r;t) stands for the jump of

the function x > F;(¢,x) at point 7.

Since x > F,(¢t,x) 1s right continuous
and decreasing, the jump at each point

x, 1s equal to F,(¢,x,)—F,(t,x,). Note
that JF,(¢,r;t) coincides exactly with the
PO, =rt,X, =i).

The random variable (Q,,X,=i) has a
probability distribution of mixed type, since

probability

F,(¢,x) is discontinuous at point x =r;t
under the hypothesis a, #0,. According

to Lebesgue’s decomposition theorem,

the probability measure of (Q,,X, =i)
is the sum of an absolutely continuous
probability measure and a discrete
probability. More precisely, we have:

OF (t,x)
Ox

“4)
where f,(¢,x) is the probability density of

dx==f,(t.x)dv -, €' ¢, (d),

1 rjt

Q,,X,=i) and 54; is the Dirac measure

at point rz. On the other hand, the set
in which we look for the vector solution

F(t,x)=(F(t,x),ieS) is C'(QR"),
where n is the cardinality of the state space
S and

Q=R XR+\£(_LWJ {0 20D U(R, X{O})U({O}XRJJ-

It is clear that Q is an open set for the usual

topology in R*. The boundary conditions of
Problem (3) refer to the border of Q2. Also,

the range of F(¢,x) is actually in the interval
[0,1]", since each component F(¢,x) is a
probability.

Theorem 3.1

In C'(Q,R"), the Problem (3) has a unique
solution.
Proof: Suppose Problem (3) has two

solutions, the difference, let say H,(t,x),
satisfies the following problem:
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OH,(t,x) =—d, aH"(t’x)ﬁ—ZH,(t,x)Ah.,Vi €S, Vx €(0,r,t)
Ot ox =3

H,(t,0)=0,YieS"
H.(t,x)=0,VieS,Vx 2rt

x = H,(t,x) is continuous on R, Vi € §
H,(0,x)=0,VieS,Vx 20

.. (5

Let us introduce the Laplace transform

H(s,x) of H,(t,x) with respect to
variable ¢ :

H,.*(s,x)=j:e-“H,. (t,x)dt, fors > 0.

This Laplace transform is well defined
giving that the function x = H,(t,x) is

continuous and |H (¢, x)| <1 as the difference

of two solutions taking their values in [0,1].

. o H.
For the partial derivative M, the
X

Dirac quantity appearing in Identity (4)
vanishes and it remains only the difference

of two probability density, let say f;'(z,x)
and f7(t,x):
OH (t,x)
ox
The boundary

H.(t,x)=0,VieS,Vx>rt leads to the
following:

= ﬁl(t,x)—ﬁz(t,x).

condition

sup | D) 1 G 16 )+ sup £2(6,x) =

x>0 X x>0 x>0

sup f'(t,x)+ sup f’(t,x)<o
xe(0,r,t) xe(0,r,t)
In the expression above, it is useful to
recall that a probability density function is
by definition nonnegative. Since the integral

I: e "dt converges for s >0, thanks to the
Leibniz integral rule the permutation

between integral and derivative with respect
to x is true:

Mzre-ﬂmm fors >0
ox 0 X ’ ‘

By taking into account of the partial
differential system and the last condition in
(5), one can prove easily that the row vector

H (s,x) = (H, (s,x),i € S)
following:

satisfies  the

OH (s,x)
Ox

sH'(s,x)=— D+H'(s,x)4

= H(s,x)(s] —A):—MD
Ox
= H(s,x)= H'(s,0e™"“, where W (s)=(s] —4)D ™"
= H.x)=(H(5,0) H (s.0)e™""

Now, it is needed to show that
H'(s,0) =0, it will be done in two phases:
H_ (s,0)=0,, andthen H_ (s,0)=0_ .In
fact, the condition “H,(t,0)=0,Vi €S"”
leads to the equality
H;(S,O):OS+ . For the states i €S, we
take advantage of the boundary condition “
H.(t,x)=0,VieS,Vx>rt”. An
immediate consequence of this condition is
to state that limHi*(s,x )=0;foralli eS§ ;
therefore the vector H'(s,x ) is orthogonal

to all eigenvectors of W (s) associated to
eigenvalues with negative real parts.
According to Lemma 1 of Tanaka et al.

(1995), the matrix W (s) has exactly |S ™|
eigenvalues with negative real part. Since

H'(s,x)=(0,. H (s,0)) and the |S~ |
eigenvectors associated to the eigenvector
with negative real part are linearly
independent, the condition of orthogonality
mentioned above implies necessarily

H ; (s,0)=0, . So, the Laplace transform
H'(s,x) is null and

H(z,x)=(H, (t,x),i€S) 1s of course null
for every fixed x and almost all ¢#. The

therefore

continuity of the function x> H,(t,x)
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guarantees the nullity of H(z,x) for all x
and ¢. Thereby, the uniqueness is proved.
|

It is interesting to specify that the stability

condition >d,z <0 where 7z, is the

ieS
steady-state probability of the process

(X,)»0> has no hand in the proof of
uniqueness. This point is predictable since in
transient regime, the stability condition is
not required at all. In asymptotic regime, the
uniqueness solution has been proved by
Nabli and Ouerghi (2009) through a spectral

analysis of the matrix 4D .
The discontinuity property of the probability

distribution F(t,x) 1is crucial for the
solution uniqueness, without it the solution
is multiple as it will be shown in the next
theorem. If the discontinuity property is
removed from the boundary conditions, the
problem becomes as follows:

D) _ g OB x4, Wie S, Vre(0.r)
Ot ox o

F(t,0)=P(X, =i),VieS§*
F(t,x)=0,VieS, Vx2rt
Vji=u,...,m JE(t,rt)=0,Vi¢ B,
F(0,x)=0,ViesS, Vx20.

. (6)

The next theorem proposes another solution
different from the one given in Theorem 2.1.
It will be seen that the number of solutions

is infinite in this case. Henceforth, 1I. stands
for the indicator function which is equal to 1

if C is true and 0 otherwise.
Theorem 3.2
The functions G,(t,x),; i €S; defined on

the interval [0,r,t), are also solution of
Problem(6):

G,(t,x) Ze )y ( )*) (- )nk (n,k)

20 n! %

t g H(ies*\sm x=0}

The real sequence W ,(n,k)) is defined

n2k

by the following recursive expressions:

e ForieS™

w,(n, k)— d & oy (k- 1)+ Zw,(nfl,k—l)P,[,Vk:I ,,,, n-1
and

Zw,(n—l,n—l)P,,., fori eB,,
w,(n,n) =418,

0 fori eS"\B,
e ForieS~
w,(n,k)= S,k +1)+ Zw n-Lk)P,, ¥k =n-1,...,0

rm_ i m_ i leS
The initial conditions are:

a; ifn=0 & ieB,

0
Wi (n,0)= {( aP™), ifn>1 & ieS*

and w, (n,n)=0,Vi S,
wherea = (e, ,i €S)=(P(X,=i),i €S) is

the initial distribution vector and P =%+1~

Proof: First, let us show that the functions
G.(t,x) are

sequence w,(n,k)is defined as a convex
combination of two elements, one can prove
by induction that:

well-defined. Since the

0<w,(n,k)<(@P"),,vi eS,vn20,Vk =0,...,n

Then, the series appearing in G, (t,x )
satisfies the following:

0 < Z( ) Hu (k)
k=0 me
< MX(“) Sy sincew, (n,k) < (&P"), <1
‘ k=0

= ”— smceZ() -yt el

Giving that T " _ the series
n=0 n!

appearing in G,(¢f,x) is absolutely

convergent.

To make the derivative computation easier,
it is imperative to write G, (¢,x) with a
simplified expression:
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, COr =y

r r
G(t,x)=>» A'e™ u "y (n, k).
ZO kz(; K(n—k)!

So, the derivatives with respect to variables
t and x are equal to:

N e
fat”‘ =GR+ A Ay ey

20 i Kln=k)!

X
m

(n+1,k),

and
3G, (t,x)
ox

Xk X

., (7) (t _7)”
= ALY, )

n20 k=0

w(n+Lk+1)-w(n+Lk)

r

m

Keeping into  consideration  the

. . . A
uniformization equality P =—+1, we
obtain: A

ZGZ (t,x)4;

leS

~G,(,x)+ ) Gy (t, )P,

le§

X \n-k

Aﬁﬂkf)
A6 (%) + 2 ey rmk' Zwlnk )

n20 k=0 leS

In order to satisfy the main partial differential

system (1), justtake w , (n,k ) such that

w,(n +1,k)=d—"(w‘.(n +Lk)-w, (n+1Lk +1))+Zw,(n,k)P,,..
7, =

The equality above can be splitted in two
and the

second form is reserved to state i €S~
It is easy to check that these two forms
coincide exactly with the expressions given
in the theorem subject. Remark also that the
formula w,(n,n)= > w, (n—1,n -DP,, related

leB,,

forms, the first concerns i S~

to i €B, , is the same as the general one

since d, =r, for i eB, and w,(n,n)=0
fori ¢B,.
Fortheboundary conditions of Problem (6), in

30

accordance with the expression of G, (¢,x ),
it is clear that this function is continuous
with respect to variable x on the open

interval (0,r,t).So, for all j=u,....m—-1
, the function x G, (¢f,x) has no jump

at point x =rt, for i ¢ B . For the case

j =m, by taking into account of condition “
F (t,r,t)=0, for i €S 7, the continuity of
the function x G, (¢,x) for each i ¢ B,

is achieved by the condition w,(n,n)=0.
Finally, the initial conditions related to

w.,(n,0) ensure the boundary condition
G,(t,00=P(X, =i)for ieS".

last condition, the function x — G, (¢,x)

For the
is defined on the interval [0,7,¢) and it is
implicitly null for x > 7, ¢t. When ¢ =0, the
interval [0,

so the condition “ G, (0,x) =0, Vie S, Vx>0
” is well satisfied. The proof of this theorem
is therefore achieved.

r,t) is reduced to the empty set,

|
Itisclearthat G, (¢,x ) is completely different

from the solution F;(¢,x) proposed in
Theorem 2.1. One can check for example that

G, (t,x) 1is differentiable at point x =7t

but F; (t,x) is not. On the other hand, since
the solution is a probability distribution
and the differential system is linear, each
convex combination of two different
solutions is also a solution of Problem (6).
So, we can conclude that Problem (6) has
an infinite number of solutions. In the proof
of Theorem 2.1, the author uses in his proof
the differential system (6) instead of (3). For
more details, see the proof in the appendix
of Sericola (1998). To be sure of the solution
validity, one must check the discontinuity
property, this will be achieved in Section 5.

Useful comments
The moment generating function of




Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.17 (2)

Dec.2016 (1437 H)

(Q,,X,=i), which coincides with
e %d@ must be handled with
X

an extreme care. In fact, because of

discontinuity of the function x = F; (t,x),
the permutation between integral and
derivative with respect to x is forbidden:

[ e X 4 O je-”F,.(t,x)dt.
0 ox ox

For illustrating this claim, we propose the
following example:

1 ifx<0

-2 ifo<x<rs
2

e ifr<x<2t

0 ifx>2t

Kobayashi and Ren (1992), Ren and
Kobayashi (1995), Tanaka et al. (1995)
made this mistake by interchanging the
derivative and integral operators whereas
the integrated function is not continuous.
Anyway, all these solutions do not take into

account of the jump at point x =r;.
Ahn and Ramasmawi (2004) constructed,

for each time ¢t >0, a stochastic process
(©"),s, of buffer contents that converges in

probability to Q,. As a direct consequence,
it is stated in their Theorem 6 page 81, that
the equality

IimPQ"™ >x,X, =i)=PQ, >x,X, =i)
holds for all real x >0. Since the random
variable (Q,,X, =i) is of mixed type,
the above equality holds only for number
x =0 at which the cumulative distribution
function x > F,(t,x)=PQ, >x,X, =i)
is continuous. This claim may explain the

difference in numerical results compared
with the method of Sericola (1998)

especially at point x =0, which is actually
a discontinuity point (see Table 1, page
95 of Ahn and Ramasmawi (2004)). The
uniformization technique is acknowledged
to be numerically stable and accurate, so we
do conjecture that the solution of Sericola
(1998) is the more accurate one, contrary
to what is stated by Ahn and Ramasmawi
(2004).

Many methods are interested in the
determination of the busy period distribution.
This random variable is governed by a
differential system identical to (1) and its
distribution is of mixed type (Barbot et al.
2001). The busy period in fluid models is
the remaining time until the buffer becomes
empty. Mathematically speaking, it is defined

by T =inf{t >0/Q, =0}. Saghouani and
Mandjes (2011) derive an integral equation

for Laplace transform of 7', but they do
not take into account of its mixed nature.

More precisely, if (s /x,i) stands for the

Laplace transform E(e™" /Q,=x,X,=1i),
according to Saghouani and Mandjes (2011),
it fulfills the following identity:

Sl /x,i) =2 Ay [ e™™e™ S (s [ x +ruk)du,
k #i

where j is the index such that r, = p(i).
Since the cumulative probability distribution

{5 P >1/0Q, =x,X, =i) 1asajumpat
the point ¢ = equal to ee "Y1, where
1 is a colundn vector of 1’s, the equation
above is false and must be as follows:

X
s

{(s/x,i)=e "e ”” 14) 4, '[we“ (s Lk du,

k#i

The element e, was defined, at the beginning
of Section 3, as the ith vector of the canonical

. B. .
basis of R™'. Here, e, is a row vector and
previously it was a column vector. The

nature of the vector e, (column or row) will
be given by the context.
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The solution

The purpose of this section is to show that
the solution proposed by Sericola (1998) and
recalled in Theorem 2.1 is actually the exact
solution of Problem (3). It is sufficient to

show that F, (¢,x ) satisfies the discontinuity
property, because it is the missing property in
the proof of Sericola (1998). The following
theorem shows that the condition related to

the jump at point x =r;¢ is really satisfied.
Theorem 5.1

The solution F, (t,x ) defined in Theorem 2.1
Sulfills:

Vi =u,...,m,JF (t,rt)= aBjeAB’B/tei VieB,.
Proof: Let je{u,..,m}and ieB,,

according to the expression of F(¢f,x) in
Theorem 2.1, we have:

JE (1) E(t,rt )= F(t,r1)

Z wr (lt) (b(])( n)— b(/+1)(n 0))

n>0

To be self-containing, we recall here the
recursive expressions related to the sequence

bV (n,k):

@ =1 b (n )+ (r ~d b (n,k ~1)= Zb
. (D

b (n,0)=(aP"),, Vi eS*

.. (8)

bV (n,0)=b"(n,n), VigB, and b (n,n)=0,Vi ¢B,
..(9)
a

Since i € B, and then d, =r;, we obtain
via Equality (7):

b (n,n) = Zb;j)(n -1,n-1)P,
le§
> b7 (n-1,0)P,.
le§
Keeping into consideration of Identity (9),
these two equalities above give:

b (n,m) =5 (0,0) = 3 (b (n~Ln-D=b"(n-LO)P,

leB;

(b1 -Ln-D=bY (0 -1L0)}P, , ;.

bi(j +1) (n , 0)

By induction on the integer n, we get:

B (n,m) =5 (1,0) = (B (0,0)=5"(0,0))(B, 5 ) ¢,
= ‘ZB,P;,B, e,, result of Identity (8) and (9).

By injecting the above equality in the

expression ofthe jump JF; (t,x ) , established
at the beginning of this proof, we obtain:

JE(t,rt) = Ze"“ (A1)

n>0 n:

n
a, | P, ) e
Bj( BjB/ i

elt(PBJﬂ, *I)e

a )
B; i

Ayl . A
= aze e, sinceP="—+1.
/ A

The proof of this theorem is then completed.

CONCLUSION

This paper proved the uniqueness of the
solution for stochastic fluid models in
transient regime under a set of boundary
conditions. It is shown that the discontinuity
property is crucial to have an exact solution.
Unfortunately, this property was ignored in
many papers thereby leading to different
mathematical errors that we specified in
details. Finally, the proof of the theorem
that uses the uniformization technique was
completed.
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