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ABSTRACT
The joint probability distribution of the buffer content and the state of the Markov process controlling the input/
output rates in a stochastic fluid model has been widely investigated. This probability distribution in transient 
regime fulfills a partial linear differential system and many techniques of resolution in the literature have been 
proposed. But the uniqueness of the solution has been never studied. In this paper, the boundary conditions to 
ensure uniqueness were precisely specified. The jumps with specific values in some critical points are necessary to 
guarantee the uniqueness of the solution. This work showed also that some methods using the Laplace transform 
do not take into account of the discontinuity property leading in that way to different mathematical mistakes 
depending on the used approach. Finally, this paper showed that the approach using the uniformization technique 
gives the exact solution and its proof is completed.

Key Words: Laplace transform, Markov process, Partial differential equations, Stochastic fluid models.

INTRODUCTION
Many researchers are interested in the 
Markov modulated fluid models, especially 
in the numerical computation of the 
cumulative distribution function of the fluid 
level in a storage device. This distribution 
function is governed by a partial differential 
system. Different approaches have been 
developed in literature to solve this system 
of partial differential equations.  In this 
context, the Laplace transform is widely 
used (Kobayashi and Ren (1992), Ren and 
Kobayashi (1995), Tanaka et al. (1995), 
Ahn and Ramasmawi (2004), Saghouani 
and Mandjes (2011)). All these methods 
did not take into account the discontinuity 
property of the solution. By omitting this 
property, different mathematical mistakes 
are induced depending on the used approach. 
All these mathematical remarks will be 
explained in Section 5. Sericola (1998) 
adopted the uniformization technique to 
have a numerically stable solution. He was 
inspired from the performability solution 
developed by Nabli (1995) and applied to 
a fault tolerant multiprocessor (Nabli and 
Sericola (1994) and (1996)) to give a similar 
solution for this system. Nevertheless, the 
boundary conditions specified in his proof 
are insufficient to get the uniqueness. In this 
paper, all boundary conditions needed to 

achieve uniqueness were precisely described 
and the crucial property of discontinuity 
was shown. Finally, the proof of Sericola 
(1998) was completed to conclude that his 
solution is actually the unique solution of the 
problem.

MATERIALS AND METHODS

Mathematical model
Stochastic fluid model has been widely 
investigated in the two last decades. This 
model is used to describe the random 
behavior of the fluid level in a buffer when 

the input iρ  and output ic  are controlled by 

a homogeneous Markov process 0( )t tX ≥  on a 
finite state space .S  The aim is to compute, by 
a numerically stable method, the distribution 

function ( )tx Q x> P  of the buffer 

content tQ   for all time 0.t >  At time 0,  

the buffer is supposed empty, that is 0 0.Q =  
It is well-known that the joint probability 

distribution ( , ) ( , )i t tF t x Q x X i= > =P  is 
governed by the following partial differential 
equations (see for instance Tanaka et al. 
(1995) and/or Da Silva Soares (2005)):
	

... (1)        

( , ) ( , ) ( , ) ,i i
i l li

l S

F t x F t xd F t x A i S
t x ∈

∂ ∂
= − + ∀ ∈

∂ ∂ ∑
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where A  is the infinitesimal generator of 

the Markov process 0( )t tX ≥  and i i id cρ= −  
designates the effective input rate associated 
to state .i  Since two states may have the 
same effective input rate, the different values 

of id ; i S∈ ; are denoted by 0 1, , ,, mr r r…  
where m  is naturally an integer less than the 
cardinality of .S  These distinct values are 
ordered in ascending order:

1 1 1 00 .m m u ur r r r r r− −> > > > ≥ > > > 

The state space S  of the Markov process 

0( )t tX ≥  can be partitioned into 1m +  

disjoint subsets 0, , ,mB B…  where iB  is 
the set composed by all states having the 

same effective input rate .ir  For commodity 
reason, let S +  denotes the subset of all states 
having positive effective input rate and S −  
denotes its complementary. The natural 
boundary conditions commonly used in the 
literature are as follow:
	

( ,0) ( ), for 
( , ) 0, , for 
(0, ) 0, 0, for .

i t

i m

i

F t X i i S
F t x x r t i S
F x x i S

+ = = ∈
 = ∀ ≥ ∈
 = ∀ ≥ ∈

P

... (2)
The first condition states that the buffer 
content tQ  is certainly nonempty when 
the process is in a filling state. The second 
condition is due to the fact that tQ  is 
upper bounded by ,mr t  and the last one 
explains the hypothesis 

0 0.Q =  The first 
two conditions cover the variable ,x  that 
corresponds in reality to the amount of fluid, 
and the last one covers the time .t  It will be 
seen in the next section that these boundary 
conditions are incomplete to have the exact 
solution. All methods of Kobayashi and Ren 
(1992), Ren and Kobayashi (1995),Tanaka 
et al. (1995), Ahn and Ramasmawi (2004), 
Saghouani and Mandjes (2011), which use 
the Laplace transform, supposed implicitly 
that the function ( , )ix F t x  is of class 

1.C  However, this property is not true. The 
author who includes the discontinuity points 
and their jump values was Sericola (1998). 
Nevertheless, his proof is incomplete since it 
does not show that the proposed solution has 
really a jump on each critical point. Without 
this last condition, we will show that the 
problem has multiple solutions.
Recalling the solution proposed by Sericola 
(1998) for the joint distribution of the 

bivariate ( , ),t tQ X  this solution was similar 
to the one proposed by Nabli and Sericola 
(1994), and Nabli (1995) for performability 
measure. It is interesting to state that the 
latter was obtained directly from an approach 
based on integral equations and not through 
a partial differential system as done in this 
study.

RESULTS AND DISCUSSION

Theorem 2.1
For all state i S∈ , we have:

• [0, )ux r t∀ ∈

( )

0 0

( )( , ) ( ) (1 ) ( , )
!

( )
n n

t n k n k u
i k i

n k u u

t x xF t x e b n k
n r t r t

λ λ− −

≥ =

= −∑ ∑

1• 1, , , [ , )j jj u m x r t r t−∀ = + … ∀ ∈

( )

0 0

( )( , ) ( ) (1 ) ( , )
!

( )
n n

t n k n k j
i k j j i

n k

tF t x e x x b n k
n

λ λ− −

≥ =

= −∑ ∑

where 
1

1( )
j

j
j j

x r t
x

r r t
−

−

−
=

− . The coefficient λ  is the 
uniformization rate of the Markov process 

0( )t tX ≥ and ( ) ( , )j
ib n k ; u j m≤ ≤ ; are real 

sequences, computed iteratively as a convex 
combination of two elements in the interval 
[0,1].

In the expressions of ( , )iF t x mentioned 
above, the convention of  (which may 

happens if 1jx r t−= and ) is .

Uniqueness
In this section, the boundary conditions of 
the differential system (1) were fixed.  As 
explained above, the discontinuity points of 
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the function ( , )ix F t x will be specified 
with their jump values. It is also proved that 
these conditions are crucial for the solution 
uniqueness.

The amount of fluid tQ  may be at level jr t  

if the driver process 0( )t tX ≥  remains in the 

subset jB  during the observation period 
[0, t]. This ascertainment is mathematically 
expressed by:

( , ) ,B Bj j

j

A t
t j t B iQ r t X i e eα= = =P

where 
jBα (resp.

j jB BA ) is the sub-vector of 

the initial distribution 0: ( ( ), )X i i S= = ∈á P  

(resp. submatrix of A ) related to jB  and ie  
is the ith vector of the canonical basis of 

| |.jBR  So, for all ,ji B∈  the function 

( , )ix F t x  has a jump at point ,jx r t=  

which is equal to .B Bj j

j

A t
B ie eα  On the other 

hand, starting from a state ,ji B∈/  the 

amount of fluid tQ cannot be at level jr t    (

. ( , ) 0t j ti e Q r t X i= = =P , for ji B∈/ ). 
Merging the partial differential system (1) 
with the boundary conditions (2), the whole 
problem governing the joint distribution of 

( , )t tQ X  is:

... (3)

where ( , )i jJ F t r t  stands for the jump of 

the function ( , )ix F t x  at point .jr t  

Since ( , )ix F t x  is right continuous 
and decreasing, the jump at each point 

0x  is equal to 0 0( , ) ( , )i iF t x F t x− − . Note 

that ( , )i jJ F t r t  coincides exactly with the 

probability ( , )t j tQ r t X i= =P .

The random variable ( , )t tQ X i=  has a 
probability distribution of mixed type, since 

( , )iF t x  is discontinuous at point jx r t=  

under the hypothesis .0
j jB Bα ≠  According 

to Lebesgue’s decomposition theorem, 

the probability measure of ( , )t tQ X i=  
is the sum of an absolutely continuous 
probability measure and a discrete 
probability. More precisely, we have:

              
( , ) ( , ) ( ),B Bj j

j j

A ti
i B i r t

F t x dx f t x dx e e dx
x

α δ
∂

= − −
∂

	
                                   
(4)

where ( , )if t x  is the probability density of 

( , )t tQ X i=  and 
jr tδ  is the Dirac measure 

at point .jr t  On the other hand, the set 
in which we look for the vector solution

( , ) ( ( , ), )it x F t x i S= ∈F  is 1( , ),nC Ω R  
where n  is the cardinality of the state space
S and 

It is clear that Ω  is an open set for the usual 
topology in 2.R  The boundary conditions of 
Problem (3) refer to the border of Ω . Also, 
the range of ( , )t xF  is actually in the interval 

[0,1] ,n  since each component ( , )iF t x  is a 
probability.

Theorem 3.1

In 1( , ),nC Ω R  the Problem (3) has a unique 
solution.
Proof: Suppose Problem (3) has two 

solutions, the difference, let say ( , )iH t x , 
satisfies the following problem:

\ ( {( , ), 0}) ( {0}) ({0} ) .
m

j
j u

t r t t+ + + +
=

 
Ω = × ≥ × × 

 
R R R R 

( , ) ( , ) ( , ) , , (0, )

( ,0) ( ),
( , ) 0, ,
(0, ) 0, ,

, , , ( , ) 0,

, , , ( , ) ,B Bj j

j

i i
i l li m

l S

i t

i m

i

i j j
A t

i j B i j

F t x F t xd F t x A i S x r t
t x

F t X i i S
F t x i S x r t
F x i S x

j u m J F t r t i B

j u m J F t r t e e i Bα

∈
+

+

∂ ∂ = − + ∀ ∈ ∀ ∈ ∂ ∂
= = ∀ ∈

 = ∀ ∈ ∀ ≥
 = ∀ ∈ ∀ ∈
∀ = … = ∀ ∈/
∀ = … = ∀ ∈

∑

R

P
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( , ) ( , ) ( , ) , , (0, )

( ,0) 0,
( , ) 0, ,

( , ) is continuous on ,
(0, ) 0, , 0

i i
i l li m

l S

i

i m

i

i

H t x H t xd H t x A i S x r t
t x

H t i S
H t x i S x r t
x H t x i S
H x i S x

∈
+

+

∂ ∂ = − + ∀ ∈ ∀ ∈ ∂ ∂
= ∀ ∈

 = ∀ ∈ ∀ ≥
 ∀ ∈


= ∀ ∈ ∀ ≥

∑

R

... (5)

Let us introduce the Laplace transform 
*( , )iH s x  of ( , )iH t x  with respect to 

variable t :

This Laplace transform is well defined 

giving that the function ( , )ix H t x  is 

continuous and ( , ) 1iH t x ≤  as the difference 
of two solutions taking their values in [0,1].  

For the partial derivative ( , )iH t x
x

∂
∂

, the 

Dirac quantity appearing in Identity (4) 
vanishes and it remains only the difference 

of two probability density, let say 1( , )if t x

and 2 ( , )if t x : 

1 2( , ) ( , ) ( , ).i
i i

H t x f t x f t x
x

∂
= −

∂

The boundary condition 

( , ) 0, ,i mH t x i S x r t= ∀ ∈ ∀ ≥  leads to the 
following:

1 2 1 2

0 0 0 (0, ) (0, )

( , )sup | | sup ( , ) sup ( , ) sup ( , ) sup ( , )
m m

i
i i i i

x x x x r t x r t

H t x f t x f t x f t x f t x
x> > > ∈ ∈

∂
≤ + = + < ∞

∂

In the expression above, it is useful to 
recall that a probability density function is 
by definition nonnegative. Since the integral 

0

ste dt
∞ −∫  converges for 0,s >  thanks to the 

Leibniz integral rule the permutation 
between integral and derivative with respect 
to x is true:

*

0

( , ) ( , ) ,  for 0.sti iH s x H t xe dt s
x x

∞ −∂ ∂
= >

∂ ∂∫
By taking into account of the partial 

differential system and the last condition in 
(5), one can prove easily that the row vector 

* *( , ) ( ( , ), )is x H s x i S= ∈H  satisfies the 
following:

Now,  it is needed to show that 
*( ,0)s =H 0 , it will be done in two phases: 
* ( ,0) 0
S S

H s+ +=  and then * ( ,0) 0
S S

H s− −= . In 

fact, the condition “ ( ,0) 0,iH t i S += ∀ ∈ ” 
leads to the equality 

* ( ,0) 0
S S

H s+ += . For the states i S −∈ , we 
take advantage of the boundary condition “

( , ) 0, ,i mH t x i S x r t= ∀ ∈ ∀ ≥ ”. An 
immediate consequence of this condition is 

to state that *lim ( , ) 0ix
H s x

→∞
= ; for all i S∈ ; 

therefore the vector *( , )s xH  is orthogonal 
to all eigenvectors of ( )W s  associated to 
eigenvalues with negative real parts. 
According to Lemma 1 of Tanaka et al. 

(1995), the matrix ( )W s  has exactly | |S −  
eigenvalues with negative real part. Since 

( )* *( , ) 0 ( ,0)
S S

s x H s+ −=H  and the | |S −  
eigenvectors associated to the eigenvector 
with negative real part are linearly 
independent, the condition of orthogonality 
mentioned above implies necessarily 

* ( ,0) 0
S S

H s− −= . So, the Laplace transform 
*( , )s xH  is null and therefore 

( , ) ( ( , ), )it x H t x i S= ∈H  is of course null 
for every fixed x  and almost all .t  The 

continuity of the function ( , )ix H t x  

*

0
( , ) ( , ) ,  for 0.st

i iH s x e H t x dt s
∞ −= >∫

1 2 1 2

0 0 0 (0, ) (0, )

( , )sup | | sup ( , ) sup ( , ) sup ( , ) sup ( , )
m m

i
i i i i

x x x x r t x r t

H t x f t x f t x f t x f t x
x> > > ∈ ∈

∂
≤ + = + < ∞

∂

*
* *

*
*

* * ( ) 1

* * * ( )

( , )( , ) ( , )

( , )( , )( )

( , ) ( ,0) ,  where ( )

 

  ( )

( , ) ( ,0) ( ,0 )( )
xW s

xW s
S S

s xs s x D s x A
x

s xs x sI A D
x

s x s e W s sI A D

s x H s H s e+ −

− −

−

∂
= − +

∂
∂

⇒ − = −
∂

⇒ = = −

⇒ =

HH H

HH

H H

H
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guarantees the nullity of ( , )t xH  for all x  
and .t  Thereby, the uniqueness is proved.

It is interesting to specify that the stability 

condition 0i i
i S

d π
∈

<∑ , where iπ  is the 

steady-state probability of the process 

0( )t tX ≥ , has no hand in the proof of 
uniqueness. This point is predictable since in 
transient regime, the stability condition is 
not required at all. In asymptotic regime, the 
uniqueness solution has been proved by 
Nabli and Ouerghi (2009) through a spectral 
analysis of the matrix 1AD − .
The discontinuity property of the probability 

distribution ( , )iF t x  is crucial for the 
solution uniqueness, without it the solution 
is multiple as it will be shown in the next 
theorem. If the discontinuity property is 
removed from the boundary conditions, the 
problem becomes as follows:

... (6)
The next theorem proposes another solution 
different from the one given in Theorem 2.1. 
It will be seen that the number of solutions 

is infinite in this case. Henceforth, 1IC stands 
for the indicator function which is equal to 1 
if C is true and 0  otherwise.

Theorem 3.2

The functions ( , )iG t x ; ;i S∈  defined on 

the interval [0, )mr t , are also solution of 
Problem(6):

The real sequence ( ( , ))i n kw n k ≥   is defined 

by the following recursive expressions:
•  For i S +∈

( , ) ( , 1) ( 1, 1) , 1, , 1i m m
i i l li

l Si i

d r rw n k w n k w n k P k n
d d ∈

−
= − + − − ∀ = … −∑

and

•  For i S −∈

The initial conditions are:

and

where 0( , ) ( ( ), )i i S X i i Sα= ∈ = = ∈á P  is 

the initial distribution vector and .AP I
λ

= +

Proof: First, let us show that the functions 

( , )iG t x  are well-defined. Since the 

sequence ( , )iw n k is defined as a convex 
combination of two elements, one can prove 
by induction that:
0 ( , ) ( ) , , 0, 0, , .n

i iw n k P i S n k n≤ ≤ ∀ ∈ ∀ ≥ ∀ = …á

Then, the series appearing in ( , )iG t x  
satisfies the following:

Giving that 
0

( ) 1
!

n
t

n

te
n

λ λ−

≥

=∑ , the series 

appearing in ( , )iG t x  is absolutely 
convergent.
To make the derivative computation easier, 

it is imperative to write ( , )iG t x  with a 
simplified expression:

( , ) ( , ) ( , ) , , (0, )

( ,0) ( ),
( , ) 0, ,

, , , ( , ) 0,
(0, ) 0, , 0.

i i
i l li m

l S

i t

i m

i j j

i

F t x F t xd F t x A i S x r t
t x

F t X i i S
F t x i S x r t

j u m JF t r t i B
F x i S x

∈
+

∂ ∂ = − + ∀ ∈ ∀ ∈ ∂ ∂
= = ∀ ∈

 = ∀ ∈ ∀ ≥
∀ = … = ∀ ∈/


= ∀ ∈ ∀ ≥

∑
P

0 0

{ \ , 0}

( )( , ) ( ) (1 ) ( , )
!

1I

( )

m

n n
t n k n k

i k i
n k m m

i i S B x

t x xG t x e w n k
n r t r t

λ λ

α +

− −

≥ =

∈ =

= −

+

∑ ∑

( 1, 1) ,  for 
( , )

0  for \
m

l li m
l B

i

m

w n n P i B
w n n

i S B
∈

+

 − − ∈= 
 ∈

∑

 if 0
( ,0)

(
  &

)  if 1    &
i m

i n
i

n i B
w n

P n i S
α

+

= ∈
=  ≥ ∈ á

( , ) ( , 1) ( 1, ) , 1, ,0i m
i i l li

l Sm i m i

d rw n k w n k w n k P k n
r d r d ∈

−
= + + − ∀ = − …

− − ∑

( , ) 0, ,iw n n i S −= ∀ ∈

0

0

0

( )0 ( ) (1 ) ( , )
!

( ) ( ) (1 ) , since ( , ) ( ) 1
!

( ) , since ( ) (1 ) 1.
!

( )

( )

( )

n n
t n k n k

k i
k m m

n n
t n k n k n

k i i
k m m

n n
t n k n k

k
k m m

t x xe w n k
n r t r t
t x xe w n k P
n r t r t
t x xe
n r t r t

λ

λ

λ

λ

λ

λ

− −

=

− −

=

− −

=

≤ −

≤ − ≤ ≤

= − =

∑

∑

∑

á
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So, the derivatives with respect to variables 
t  and x  are equal to:
	

and

Keeping  into consideration the 

uniformization equality ,AP I
λ

= +  we 
obtain:
	

0 0

( , )

( , ) ( , )

( ) ( )
( , ) ( , )

!( )!

l li
l S

i l li
l S

k n k
n

n t m m
i l li

n k l S

G t x A

G t x G t x P

x xt
r rG t x e w n k P

k n k
λ

λ λ

λ λ λ

∈

∈

−

−

≥ = ∈

= − +

−
= − +

−

∑
∑

∑ ∑ ∑
In order to satisfy the main partial differential 

system (1), just take ( , )iw n k  such that
	

( )( 1, ) ( 1, ) ( 1, 1) ( , ) .i
i i i l li

l Sm

dw n k w n k w n k w n k P
r ∈

+ = + − + + +∑

The equality above can be splitted in two 
forms, the first concerns i S +∈  and the 
second form is reserved to state i S −∈ .
It is easy to check that these two forms 
coincide exactly with the expressions given 
in the theorem subject. Remark also that the 
formula                                             , related 

to               , is the same as the general one 

since i md r=  for mi B∈  and ( , ) 0iw n n =  

for .mi B∈/
For the boundary conditions of Problem (6), in 

accordance with the expression of ( , ),iG t x
it is clear that  this function is continuous 
with respect to variable x on the open 

interval (0, ).mr t So, for all , , 1j u m= … −

, the function ( , )ix G t x  has no jump 

at point jx r t= , for .ji B∈/ For the case 
,j m=  by taking into account of condition “

( , ) 0i mF t r t = ,  for i S∈ ”, the continuity of 

the function ( , )ix G t x  for each mi B∈/  

is achieved by the condition ( , ) 0.iw n n =  
Finally, the initial conditions related to 

( ,0)iw n  ensure the boundary condition 

( ,0) ( )i tG t X i= =P for i S +∈ . For the 

last condition, the function ( , )ix G t x  

is defined on the interval [0, )mr t  and it is 

implicitly null for .mx r t≥  When 0,t =  the 

interval [0, )mr t  is reduced to the empty set, 

so the condition “ (0, ) 0, , 0iG x i S x= ∀ ∈ ∀ ≥
” is well satisfied. The proof of this theorem 
is therefore achieved.

It is clear that ( , )iG t x  is completely different 

from the solution ( , )iF t x  proposed in      
Theorem 2.1. One can check for example that 

( , )iG t x  is differentiable at point ux r t=  

but ( , )iF t x  is not. On the other hand, since 
the solution is a probability distribution 
and the differential system is linear, each 
convex combination of two different 
solutions is also a solution of Problem (6). 
So, we can conclude that Problem (6) has 
an infinite number of solutions. In the proof 
of Theorem 2.1, the author uses in his proof 
the differential system (6) instead of (3). For 
more details, see the proof in the appendix 
of Sericola (1998). To be sure of the solution 
validity, one must check the discontinuity 
property, this will be achieved in Section 5.

Useful comments
The moment generating function of 

0 0

( ) ( )
( , ) ( , ).

!( )!

k n k
n

n t m m
i i

n k

x xt
r rG t x e w n k

k n k
λλ

−

−

≥ =

−
=

−∑ ∑

0 0

( ) ( )
( , ) ( , ) ( 1, ),

!( )!

k n k
n

n ti m m
i i

n k

x xt
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( , )t tQ X i= , which coincides with 

0

( , ) ,st iF t xe dt
x

∞ − ∂
−

∂∫  must be handled with 

an extreme care. In fact, because of 

discontinuity of the function ( , ),ix F t x  
the permutation between integral and 
derivative with respect to x  is forbidden:

0 0

( , ) ( , ) .st sti
i

F t xe dt e F t x dt
x x

∞ ∞− −∂ ∂
≠

∂ ∂∫ ∫
For illustrating this claim, we propose the 
following example:
	

Kobayashi and Ren (1992), Ren and 
Kobayashi (1995), Tanaka et al. (1995) 
made this mistake by interchanging the 
derivative and integral operators whereas 
the integrated function is not continuous. 
Anyway, all these solutions do not take into 

account of the jump at point .jx r t=
Ahn and Ramasmawi (2004) constructed, 
for each time 0t ≥ , a stochastic process 

( )
0( )n

t nQ ≥  of buffer contents that converges in 

probability to .tQ  As a direct consequence, 
it is stated in their Theorem 6 page 81, that 
the equality
	

holds for all real 0x ≥ . Since the random 

variable ( , )t tQ X i=  is of mixed type, 
the above equality holds only for number 

0x ≥  at which the cumulative distribution 

function ( , ) ( , )i t tx F t x Q x X i= > = P  
is continuous. This claim may explain the 
difference in numerical results compared 
with the method of Sericola (1998) 

especially at point 0,x =  which is actually 
a discontinuity point (see Table 1, page 
95 of Ahn and Ramasmawi (2004)). The 
uniformization technique is acknowledged 
to be numerically stable and accurate, so we 
do conjecture that the solution of Sericola 
(1998) is the more accurate one, contrary 
to what is stated by Ahn and Ramasmawi 
(2004).
Many methods are interested in the 
determination of the busy period distribution. 
This random variable is governed by a 
differential system identical to (1) and its 
distribution is of mixed type (Barbot et al. 
2001). The busy period in fluid models is 
the remaining time until the buffer becomes 
empty. Mathematically speaking, it is defined 

by inf{ 0 / 0}tT t Q= > = . Saghouani and 
Mandjes (2011) derive an integral equation 
for Laplace transform of ,T  but they do 
not take into account of its mixed nature. 
More precisely, if ( / , )s x iζ  stands for the 

Laplace transform 0 0( )/ ,sTe Q x X i− = =E , 
according to Saghouani and Mandjes (2011), 
it fulfills the following identity:

where j  is the index such that ( )jr iρ= . 
Since the cumulative probability distribution 

0 0( / , )t T t Q x X i> = = P  has a jump at 

the point 
j

xt
r

=  equal to  
B Bj j

j

xA
r

ie e 1 , where 
1  is a column vector of 1’s, the equation 
above is false and must be as follows:

The element ie was defined, at the beginning 
of Section 3, as the ith vector of the canonical 

basis of | |.jBR  Here, ie  is a row vector and 
previously it was a column vector. The 

nature of the vector ie (column or row) will 
be given by the context.
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4
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The solution
The purpose of this section is to show that 
the solution proposed by Sericola (1998) and 
recalled in Theorem 2.1 is actually the exact 
solution of Problem (3). It is sufficient to 

show that ( , )iF t x  satisfies the discontinuity 
property, because it is the missing property in 
the proof of Sericola (1998). The following 
theorem shows that the condition related to 

the jump at point jx r t=  is really satisfied.

Theorem 5.1

The solution ( , )iF t x  defined in Theorem 2.1 
fulfills:

, , , ( , ) , .B Bj j

j

A t
i j B i jj u m J F t r t e e i Bα∀ = … = ∀ ∈

Proof: Let { , , }j u m∈ … and ,ji B∈  

according to the expression of ( , )iF t x  in 
Theorem 2.1, we have:
	

To be self-containing, we recall here the 
recursive expressions related to the sequence 

( ) ( , )j
ib n k :

	
... (7)

... (8)
	

... (9) 	

Since ji B∈  and then ,i jd r=  we obtain 
via Equality (7):

Keeping into consideration of Identity (9), 
these two equalities above give:

By induction on the integer ,n  we get:

By injecting the above equality in the 

expression of the jump ( , )iJ F t x , established 
at the beginning of this proof, we obtain:

The proof of this theorem is then completed.

CONCLUSION
This paper proved the uniqueness of the 
solution for stochastic fluid models in 
transient regime under a set of boundary 
conditions. It is shown that the discontinuity 
property is crucial to have an exact solution. 
Unfortunately, this property was ignored in 
many papers thereby leading to different 
mathematical errors that we specified in 
details. Finally, the proof of the theorem 
that uses the uniformization technique was 
completed.
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تعليقات على الحل الانتقالي لنماذج ال�سوائل الع�شوائية

الهادي النابلي و علي العلوان

قسم الرياضيات والإحصاء، كلية العلوم، جامعة الملك فيصل
الأحساء، المملكة العربية السعودية

استلام 31 مارس 2015م - قبول 13 نوفمبر 2015م

الملخ�ص
لقــد تمــت، علــى نطــاق واســع، دراســة التوزيــع الاحتمالــي المشــترك لمســتوى الســائل فــي جهــاز التخزيــن وحالــة عمليــة ماركــوف المســيطرة علــى مع�ـدلات 
الإدخال/الإخــراج فــي نمــوذج الســوائل العشــوائية. هــذا التوزيــع الاحتمالــي فــي النظــام الانتقالــي يناظــر نظامــا تفاضليــا خطيــا جزئيــا، وقــد تــم اقتـــراح 
العديــد مــن التقنيــات والطــرق لحــل هــذا النظــام التفاضلــي. ولكــن وحدانيــة الحــل لــم تتــم دراســتها إطلاقــا. فــي هــذه الورقــة البحثيــة، حــددت بدقــة 
الشــروط الحديــة لضمــان الوحدانيــة. تــم إثبــات أن القفــزات بقيــم معينــة فــي بعــض النقــاط الحرجــة ضروريــة لضمــان وحدانيــة الحــل. وجــب أيضــا 
التنبيــه أن بعــض الطــرق المســتخدمة لتحويــل لاباــس لا تأخــذ بعيـــن الاعتبــار خاصيــة الانفصاليــة ممــا يــؤدي إلــى أخطــاء رياضيــة مختلفــة علــى 
حســب النهــج المتبــع. وأخيـــرا، تــم إثبــات أن النهــج المســتخدم لتقنيــة الانتظاميــة )uniformization( يعطــي الحــل الدقيــق الصحيــح وتــم برهــان 

هــذا الحــل.

الكلمات المفتاحية: تحويل لابلاس، عملية ماركوف، المعادلات التفاضلية الجزئية، نماذج السوائل العشوائية.


