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ABSTRACT

In this paper, we study some properties of the determinant of a neutrosophic matrix. Also, we prove that |4.adj(4)| = |A| = |adj(4).4] and define the matrices
A, ..pmlas.am)@Nd Agoq)- Further, a method is presented for calculating the determinant of a neutrosophic matrix that has a large number of columns and rows.
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1. Introduction

The Neutrosophic Theorem is a new approach to dealing with issues
including imprecise, indeterminant and discordant data.

A neutrosophic set is described philosophically by Smarandache
(1998). It is a generalization of the concept of the fuzzy set and the
intuitionistic fuzzy set. Each elementin the neutrosophic set has three
related defining functions that are independent of one another: the
membership function (t), indeterminacy function (i) and the non-
membership function (f). These three functions are defined on the
universe of discourse X (Smarandache, 2006). The definition of the
neutrosophic set, known as a single-valued neutrosophic set, was
then provided by Wang et a/. (2010). The single-valued neutrosophic
set is applied to algebraic and topological structures. Getkin and
Aygiin (2015) introduced the concepts of neutrosophic subgroups of
a given classical group and neutrosophic of a given classical ring
(Cetkin and Aygiin, 2019). Also, Getkin er a/. (2017) presented the
definition of the neutrosophic submodule of module and studied
some of its fundamental properties.

Molodtsov (1999) established the soft set theory, and it is a new
mathematical tool for modelling ambiguity and uncertainty.

Matrices are very crucial to science and technology. However, there
are situations when the classical matrix theory is unable to resolve the
problems with uncertainties that arise in an uncertain environment.

Dhar et a/. (2014) introduced a type of neutrosophic matrix, called a
square neutrosophic matrix, with entries in the form a+Ib
(neutrosophic number) where a, b are the elements in [0,1] and [ is
an uncertainty such thatI"* = I ; n being a positive integer. Sumathi
and Arockiarani (2014) introduced new operations for fuzzy
neutrosophic soft matrices. Uma er a/ (2017) have introduced the
determinant and adjoint of square fuzzy neutrosophic soft matrices.
A type of matrix termed a neutrosophic matrix, with inputs from a
single-valued neutrosophic set, is defined by Varol, er a/ (2019)
along with some algebraic operations describing it. By using the
operations component wise addition and component wise
multiplication, they have proven that a collection of all neutrosophic
matrices forms a semiring.

The determinant of a neutrosophic fuzzy matrix has been introduced
by Sophia and Jayapriya (2019), and they have researched its

properties. In addition, the trace and the adjoint of a neutrosophic
fuzzy matrix are defined. Salama er al (2022) introduced the
neutrosophic matrix in a completely different form compared to Dhar
er al. (2014), where a square neutrosophic matrix of ordern X nis
defined as M = A + BI, such that 4, B are two square real matrices of
ordern X n.

In this work, we will recall the notion of a single-valued neutrosophic
set, which is referred to as a neutrosophic set for convenience. Then
we give a brief summary of neutrosophic matrices and several
algebraic operations on them. Furthermore, we present a definition
of the determinant of a neutrosophic matrix and some of its
properties. Finally, we give our conclusions.

2. Preliminaries

In the section, we give some definitions that are used in the paper.

First, the operations vV and A for a, b € [0,1] are defined as follows:
aVb =max{a,b},a Ab =min{a, b}.

2.1. Definition (Wang er a/, 2010):

A single-valued neutrosophic set A on the universal set X is defined
by the following form: A = {{x. t,(x), i4(x), fa(x)) : x € X}, where
ta, ia fa: X = [0,1] define the degree of membership function, the
degree of indeterminacy function, and the degree of non-
membership function, respectively, for each element x € X in the
set Asuchthat 0 < t,(x) + iy(x) + f4(x) < 3.

2.2. Example (Wang et al., 2010):

X = {x1, x,, x3}, where x, is capacity, x, is trustworthiness and x5 is
cost. The values of {x;, x,, x5} are in [0,1] and are obtained from
questionnaires completed by experts. The experts assess their point
of view in three combinations: the degree of goodness, the degree of
indeterminacy and the degree of poorness to explain the
characteristics of the objects. Suppose A is a single-valued
neutrosophic set on X , such that A=
{(x,,0.3,0.4,0.5),(x,,0.5,0.2,0.3 ),{(x3,0.7,0.2,0.2 )}, where for x;,
the degree of goodness of capacity is 0.3, the degree of indeterminacy
of capacity is 0.4 and the degree of falsity of capacity is 0.5 etc.
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2.3. Definition (Varol et a/, 2019):

A neutrosophic matrix of order mxn is defined by A=
[(ta(ais), ia(ay), fa(ay))]. such that ta(ay;), ia(ay), fa(ay;) denote
truth-membership,  indeterminacy-membership  and falsity-
membership values of the ij-th element in A, satisfying the condition

0< tA(aij) + iA(aij) +fA(aij) < 3 foralli,j.
2.4. Example:

The following matrix A is a neutrosophic matrix of order 3 x 1:

(0.3,0.4,0.5)
(0.5,0.2,0.3)
(0.7,0.2,0.2)

A=

2.5. Definition (Varol et a/, 2019):
Let A = [(t4(ay). ia(ay). £ 4(a;))] and
B = [(ts(by), is(bij), fo(bi;))]

be two neutrosophic matrices of order m X n.

Then the matrix addition and subtraction are defined as

A+B= [(tA(aij) \% tB(bij)J iA(aij) \% ’:B(bij)JfA(aij) Afg (bij))]-
A =B = [(ta(ai) = ts(byj), ia(ay;) = i5(by), falay) = f5 (b )]
where

taa) = ta(0) = {4500 7 4(0) = 85(00)

0 ; otherwise

ia(ay) — ip(byy) = {iA(gij) () > iy (by) .

; otherwise

fA(aii) - fB(bi]) = {fA(alij) ’ fA(aU) = fB(b”) .

; otherwise

And the component wise matrix multiplication is defined by

A« B =[(ty(ai;) Atp(biy),in(ay) Aip(big), falay) v f5(bi))]-

2.6. Definition (Varol et a/, 2019):

Let A = [(tA(aij), iy (aij),fA(aij))] and
B = [(tB(bij), iB(bU),fB(bU))] be two neutrosophic matrices of

orderm x nand n x p, respectively. Then the matrix product AB is
defined as

AB =

(\/ talag) Aty (bkj)' \/ ialag) Nig (bkj)' /\fA(aik) \% fB(bkj)>]
W(’::zm also write, . =
AB =

(z talag) tg (bkj)' Z ia(ag)-ip (bkj)' 1—[ falay) +f3 (bkj))]

k=1 k=1 k=1
In this case, A and B are conformable for multiplication.

2.7. Definition (Varol et a/, 2019):

Let A = [(tA(aij), iy (aij),fA(aij))] be a neutrosophic matrix of
order m x n. Then the transpose of A is defined by

AT = [(ta(@ji), ia(ae), fal@i))]-
2.8. Definition (Varol et a/, 2019):
Let A = [(tA(aij), iy (aij),fA(aij))] be a neutrosophic matrix of

order mxn and k€[0,1] . Then the neutrosophic scalar
multiplication is defined as

kA = [(k Ata(ay) ke Aig(ai), (1= K) V fa(a))]-

2.9. Definition (Varol et a/, 2019):
Let A be a neutrosophic matrix of order m x n.

If all its entries are (0,0,1), then 4 is said to be zero neutrosophic
matrix and denoted by 0.

If all its entries are (1,1,0), then A is said to be universal neutrosophic
matrix and denoted by J.

2.10. Definition (Varol ez a/, 2019):

The identity neutrosophic matrix of order n x n is denoted by I,,,
and definedas I,, = [(t,n(lij), i,n(lij),f,n(ﬂij))],

00,1) ;i +#j
where (&, (1)), i1, (4), i (3))) = {E1,1,0§ ; i : :

2.11. Definition (Sophia and Jayapriya, 2019):

Let A be a neutrosophic matrix of order n x n.

o if (tA(aU),iA(aij),fA(aij))=(0,0,1) Vi>j , then the

matrix A is called an upper triangular neutrosophic matrix.
o if (tA(aij), ia(ay) faa;)) = (00,1) Vi<, then the
matrix A is called a lower triangular neutrosophic matrix.
®  The matrix A is called a triangular neutrosophic matrix if either
taaij)ia(ai), fa(ai;) ) = (0,0,1) vi > j or
ta(aij)sia(ai), fa(ai;)) = (0,0,1) Vi < j.

3. Determinant of a Neutrosophic Matrix

3.1. Definition (Sophia and Jayapriya, 2019):

The determinant of a neutrosophic matrix 4 of order nxn is denoted

by det (4) or |A] and is defined by
[Al = z (tA(ala(l))’ iA(ala(l))'fA(ala(l))) ‘e

OESy
. (tA(ana(n))J iA (ana(n))' fA(ana(n)))
We can also write,

\/ ta(@1oy) A e A ta(@nogmy), \/ i4(a151)) A o A ia(@nom)s

|A | — OESn OESR

/\ fA(ala(l)) V..V fA(ano(n))

OESn

where S, is the symmetric group of all permutations of {1,2, ..., n}.

3.2. Example:
Let A be a neutrosophic matrix of order 2 x 2 such that

_1(0.3,0.1,02) (0.1,0.4,0.5)

4= 1001,02) (0.90.1,0.1)

. Then

|4l = (0.3,0.1,0.2). (0.9,0.1,0.1) + (0.1,0.4,0.5). (0,0.1,0.2)
=(0.3,0.1,0.2) + (0,0.1,0.5)
=(0.3,0.1,0.2).

3.3. Properties of the Determinant of a Neutrosophic
Matrix:

3.3.1. Property 1 (Property of Reflection)

The value of the determinant of a neutrosophic matrix remains
unchanged if any two rows (columns) are swapped.

3.3.2. Property 2 (Property of All Zero)

If there is a row (column) in a neutrosophic matrix A with all its
elements as (0,0,1), then |4| = (0,0,1).
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3.3.3. Property 3 (Property of Scalar Multiple)

If there is a row (column) in a neutrosophic matrix A with all its
elements multiplied by a non-zero constant, then the determinant
gets multiplied by the same constant.

3.3.4. Property 4 (Property of Triangle)

Let A be a triangular neutrosophic matrix of order nxn. Then

[Al = H(tA(aii)r ig(ap), fulay)) .

3.3.5. Property 5 (Property of Transpose)

Let A4 be a neutrosophic matrix of order n x n. Then |A| = |A7|.

3.4. Definition (Sophia and Jayapriya, 2019):

Let A be a neutrosophic matrix of order n x n and 4;; is the
neutrosophic matrix of order (n — 1) X (n — 1) formed by deleting
row i and column j from A. The adjoint matrix of A is denoted by
adj(A) and is defined by adj(4) = [|Aﬁ|]‘

4. Main Results

4.1. Theorem:
Let A = [(tA( 11) I.A( U) fa ( U)) be a neutrosophic matrix of
order (tA(au) "A(au) fA(au)) =

(talazo), iA(aik),fA(aik)) ; k= 1,2, .on for all 1<i<n, then
|4l = (tA(all)- iA(all)JfA(all)) (tA(ann)l iA(ann)va(ann))‘

Proof
By definition of |4, we get
Al = (tA(an)» iA(all):fA(all)) (tA(ann)l iA(ann)lfA(ann)) (@)
For any permutation o € S5, we have

(talai), ialay), falag)) = (tA(aia(i))'iA(aio(i))JfA(aia(i))) ;

i=12,..,n

since(ta(aw), ia @i, fa(aw)) = (talaud), ia(au), fala)) ;
k=12,..,nforalll <i<n.

Hence
(talarn), ia(arn), fa(@11)) - (ta(ann), ia(ann), fa(@nn))
2 (tA(ala(l))J 2 (ala(l))'fA(ala(l))) e
: (tA (o), ia(anom). fa (ana(n)))
= (talan) ia(arn), fa(a10) - (t4(ann), ta(@nn), falann)) =
D (t4@s0m) a@r0) fal@1o)) -

OESy
'(tA(ana(n))‘ iA(ana(n))' fA(ana(n))) = IAI (2)
[Al = (tA(all): iA(all):fA(an)) (tA(ann)a iA(ann)lfA(ann)) ;
by (1) & (2).
4.2. Theorem:

Let A = [(tA(aij), iy (aij),fA(aij))] be a neutrosophic matrix of
ordern X n. Then |[4AT| > |A|.

Proof

Let 44T = [(tAAT(pij)» iAAT(pi]')'fAAT(pij))]lWhere

(tAAT(pij)J it (i), faar (Pi/))

= Z talap). tAT(akj)'Z ia(a). iAT(akj)' 1—[ faCay)
k=1 k=1

k=1
+fAT(akj)

Z ta(ag). fA( k) Z ia(ag). ’-A( k)!l—[fA(aik) +fA(ajk)
k=1

for "ih je{12,..,n}

If i = j,we see that

(tAAT(pu) I.AAT(p”) fAAT(pu))
(Z talay), z ia(ag), 1—[ fa (‘Lk))

- Zm(am), ia(@s0), £ (@)

For any permutation o ézg’n, we get

Z(% (@), ia(an), falag)) = (tA(aia(i))J U (aia(i))'fA(aia(i)))
k=1
ief1.2,..,n}

|ad™| = Z (tAAT(pla(l))' iAAT(pla(l))'fAAT(pla(l))) s

OESy
. (tAAT (pmr(n))' iAAT(pna(n))' fAAT (pno(n))) 2

(tAAT (P11), taar @11, faar (Pu)) (tAAT Pnnds tgam @an), faar (pnn))

= (Z (taCaze), ia(as), fA(alk))>
k=1

-(Z(u(ank), iA(ank).fA(ank))>
k=1

= (tA(ala(l))’ iy (alo'(l))'fA(alo'(l))) B
. (tA (ana(n))' iA (ann(n))' fA (ana(n)))

Thus,

[AAT| = z (tA(ala(l))’ iA(ala(l))'fA(ala(l))) ‘e

OESy

'(tA(ano(n))' iA(ana(n))‘ fA(ana(n))) = IAI

4.3. Remark:

In general, we have that |AB| # |A||B| where A and B are two
neutrosophic matrices of order n x n. This is illustrated in the next
example.

4.4. Example:

(0.14,0.7,0.1) (0.25,0.6,0.12)] d

LetA = [(0.12,0,7,0_3) (0.24,0.7,0.1)

5= [(0.5,0.3,0) (0.3,0.5,0.2) ]
~1(0.2,0.6,0) (0.16,0.7,0.4)]

Then 4B = [(0-2,0.6,0.1) (0.16,0.6,0,2)]

(0.2,0.6,0.1) (0.16,0.7,0.3)

Therefore, |A| = (0.14,0.7,0.1), |B| = (0.2,0.5,0.2),
|Al.|B] = (0.14,0.5,0.2) and |A. B| = (0.16,0.6,0.2).

We notice that |AB| # |A||B].
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4.5. Theorem:
Let A and B be two neutrosophic matrices of order nxn. Then
1) |AB| = |Al|BI,

2) |AB|=|A+B|.

Proof
1) |4B|=
[(Z talay)-ts(by;), z ig(ay). ip(byj), 1—[ falay) +f3 (bkj))]
k=1 k=1 k=1
we have
|AB| =
z (Z talagp). tp (bka(l))'z ia(ag).ip (bka(l))» 1—[ falas)
oES, \ k=1 k=1 k=1

+ /5 (bka(l))> ‘e

. (Z ta(ani)- tp (blm(n))' ia(ang). ip (bka(n))' 1—[ falan)
k=1 k=1

k=1

+ fp (bko(n))

0€Sy \Ky,kn

=Z<Zu@0w@@%%mhu%m)

Z ia(asey) - ta(@niey)- 18 (Bryon)) - i (bryony):

Kq)nkn

[T fiase) - falanen) + fo(bsow) - fo (o)

Kqyekn

- z z (talas) ia(ani), falsey)) -

GESy Ky,okn,

(tA (ankn)' iA(ankn)' fa (ankn)) . (ts (bkla(l))' ip (bkla(l))' fB (bkla(l)))'
e (tB (bkna(n))J iB (bno(n))' fB (bkna(n)))

= > (@) ialane,) falane,)) - (eaani), ia (i, ).

Kq,nkn

faan) - . (6(bso) is(besow) fo (o)) -

OESy

. (tB (bkna(n))J iB (bkna(n))' fB (bkna(n)))

2 > (@) iaane,) falane,)) - (eaani ). ia (i, ).

Kq)okn

faan) - . (t6(bio) is (bao). o (Brocw) ) -

OESy

. (tB (bmr(n))' iB (bna(n))' fB (bna(n)))
= > (o) iaane,) falane,) - (6aani, ) ia (),

(k1 kn)ESn

fa(@ni,)) - 1BI
= 141|B.

2) 4Bl =
z (Z talagp). tp (bka(l))' z ia(ag).ip (bka(l))» 1—[ falas)
€S, \ k=1 k=1 k=1

+fp (bka(l))> ‘e

. (Z ta(ani)-ty (bka(n))' ia(ang).ip (bka(n))' 1—[ falan,)
k=1 k=1

k=1
+ fB (bka(n))
= Z < /\ (tA(am) Vitg (bta(l))) ’ /\ (iA(als) \ iB(btJ(n))) K
gES, \sstsn 1sstsn

\/ (fA(als) A fB (bta(l)))> < /\ (tA(ans) \% tB(bta(n))) )
/\ (iA (ans) \% iB (bta(n))) ’ \/ (fA (ans) A fB (bm(n)))>

1<st<n 1sst<n
= Z (tA (ala(l)) Vitp (blu'(l))' ig (ala(l)) Vig (blﬂ(l))'fA(ala(l))
OESy

A fB (blo(l))) (tA (ana(n)) Vip (bna(n))‘iA(ana(n))
\% ’:B (bna(n))' fA (ana(n)) A fB (bna(n))>
=|A+ B

4.6. Corollary:

(1) Let A4y, ..., A, be neutrosophic matrices of order n x n. Then

Sa

m
[Agl oo 1A < [Aq. o Al < ;meN.
k=1

(2) Let A be a neutrosophic matrix of order nxn. Then
A" = |Al; r €N.

4.7. Theorem:
Let A, B and C be three neutrosophic matrices of order nxn. Then

|é gl = |4l.|B], where 0 = [(0,0,1)] is the zero neutrosophic matrix

of ordernxn.

Proof
Suppose that [g g] =D= [(tD(dij),iD(dij),fD(dij))], then,

|g gl = z (tD(dla(l))'iD(dla(l))JfD(dla(l)))'"'

TESon

. (tD (d2n0(2n))' ip (dZnJ(Zn))' o (dZnU(Zn)))

= Z (tD (dla(l))J iD(dla(l))afD(dlau)))

OESon
o(i)sn;isn

. (tD (dZTID'(ZTl))’ iD (dZna(Zn))' fD (dZnJ(Zn)))

+ Z (tD(dla(l))' iD(dlﬂ(l))'fD(dlﬂ(l)))

OESyn
3i>n; o(i)sn

. (tD (d2n0(2n))' ip (dZnJ(Zn))' o (dZnU(Zn)))

Since, for any permutation ¢ € S,, such that 3i >n;o() <n,
there is that

(tn (dio) in(dio). fo (dia(i))) =(001)
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Therefore,

2= D (o) in(diow) foldio)) -

OESon
o(i)sn;isn

. (tD (dZna(Zn))' ip (dZnJ(Zn))J o (dZna(zn))) =

D7 (to(diay) in(dracey) fo(daacny)) - (60 (@atn o (dna)

aESy
a()=o(i)

;isn

So(draw))- . (to(dipn).in(dapn). foldapen))

OESon
B@D=a(i+n)

;isn

o (to(dngem)s 0 (dnpem) o (i)
= |A|.|B].

4.8. Theorem:

Let A and B be two neutrosophic matrices of order nxn. If both 4 and
B are upper triangular neutrosophic matrices or both lower triangular
neutrosophic matrices, then |AB| = |A[|B|.

Proof

Let A and B be two upper triangular neutrosophic matrices of order
nxn.

Assume that AB = [(tAB(dij),iAB(dij),fAB(dij))].The ij-th element
of the product AB is (tAB(dij), iup (dij),fAB(dU)) =

n

Z tA(aik)-tB(bkj)' iA(aik)-iB(bkj)'l—[fA(aik)
k=1 k=1

k=1

+fB(bkj) iLj=1.2,..,n

Fori>j:if k> ithenk > jso that (tB(bk,), i5 (b)), fo(bey)) =
0,0,1) and if i>k then (ty(aw), ii(ay), is(ay)) = (0,0,1),
hence

tan(d) = ) talai- to(big) = ) tal@): (0) + ) (0).tg(by)
k=1 k=1 k=1

=0 k>i k<i

Similarly, we obtain

iAB(dij) =0 & fAB(dij) =1
Thus,

(tAB(di]')' iAB(dij)'fAB(dij)) =(0,0,1) Vi>j
This means that AB is an upper triangular neutrosophic matrix.

Therefore,

|AB| = 1—[ (tas(di), iap (i), fap(d))

i=1
Now, we have

(0)-f3(b,a-); i>k
tA(aik)' (0) i<k
tA(aii)' tg(bii) ;i=k

0 i+ k
= talag)- tp(b) = {tA(aii)- tp(by) s i=k

ta (aik)' tp (bki) =

n

= (i) = ) talaiw):tabeo) = ta(ai)-to(bi)

k=1

Similarly, we obtain,

iap(dip) = ig(ay). ip(by) & fap(dy) = falay) + fp(by)

Thus,

n

|AB| = H(tA (a)-ts(by), igla)- ip(by), falay) + fz(by))

=1

= l—l(tA(aii): ig(aw), falai) . (ts(bi), is(bip), f5 (b))

= (1—[ (tala), ig(ai), fa (%‘))) . <1—[(t8 (b, i (b)), f3 (bn'))>

i=1 i=1

= |Al.|B|
Similarly, we can prove this property for lower triangular

neutrosophic matrices of order nxn.

4.9. Remark:

Let A and B be two neutrosophic matrices of order nxn. If both 4 and
B are upper (lower) triangular neutrosophic matrices, then AB is an
upper (lower) triangular neutrosophic matrix.

4.10. Theorem:

Let A be a neutrosophic matrix of order nxn. Then

n

Al = > (4@, a (@), ia@) Ayl =12, 0

t=1

Proof

[Al = z (tA(ala(l))’ iA(ala(l))'fA(ala(l))) ‘e

OESy

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))

n

:Z Z (tA(ala(l))’ iA(alﬂ'(l))’fA(alg(l)))-

t=1 OESy
a()=t

. (tA(ana(n))J iA (ann(n))' fA(ana(n))) =

Z(tA (@), ia(ai), falaip))- z (tA (a1p1))s iaaspy) fa (%5(1)))

ﬁesnin[
(tA (ai—l 5(171)) ia (ai—l 5(1'71))' fa (ai—l 5(171))) . (tA (@is1pasn))

ia(@ir1 gaen)s Fa(@ie1 piinny)) - (Ea(@ngen))s ia(@npn)s fa(@ngn))
Where n; ={1,2,..,n}\{i} and S, denotes the set of all
permutations of the setn; on the setn,.

By definition of the determinant, we write
[A;] = Z (tA(alﬁ(l))’ iA(aw(l))-fA(amu))) e
BESnine
. (tA(ai—l pi-0) a1 pa-) fa(aio 5(1—1))) (taCaiss paen)
4(@ie1 parn) fa@in i) - (ta(@npan), ia(@npn): fa(@npen)

The Proof is complete.

4.11. Definition:

Let A be a neutrosophic matrix of order n x n. The matrix 4 p,...pmy is
. . \d1--Gm

the neutrosophic matrix of order (n — m) x (n — m) thatis a result

of A by deleting the row py,..., the row p,,, the column gq,.... and the

column q,,, from 4, wherep; < - <ppandq, < - < gp,.

The matrix A(plmpm) called a principal submatrix of order

P1--Pm.
(n—m) X (n—m)of A.
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4.12. Theorem:
Let A be a neutrosophic matrix of order nxn. Then
14|
_ Z (taarp) ia(arp), fa(arp))  (ta(asg), ia(arg), falasy)) lan,
= (ta(azp), ia(azp), faazp))  (ta(@zq), iaazq), fal@2))l | o g

where the summation is taken over all p and q in{1,2, ..., n} such that
p<q.
Proof

|[Al = z (tA(ala(l))’ iA(ala(l))'fA(ala(l))) ‘e

OESy

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))
= z (tA(ala(l))' ig (a1a(1))-fA (ala'(l))) ‘e

OESy
a{1,2}={1,q}¢>1

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))
+ z (tA (ala(l))' ia (alﬂ(l))'fA (ala(l))) ‘e

TESy
o(12)=(2.0)g>2

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))
+o z (tA (‘110(1))' iA(ala(l))’fA (ala(l))) e

OESy
a{1,2}={n-1,q}g>n-1

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))
= Z Z (tA (ala(l))' iA(ala(l))'fA (ala(l))) ‘e

p<q OESy
a{1,2}={p.q}

. (tA (ana(n))J iA (ana(n))' fA (ano(n)))
Let S(p,q) = {0: {1,2} - {p, q}| o is bijection}. Then
Al =

Z( Z (tA(am(n), iA(alﬁ(l))'fA(alﬁ(l))) (talazp)iia(azpez)

BESR.Q)

n

-fA(azﬁ(z)))- Z 1—[(tA(aia(i))'iA(aia(i))JfA(aiJ(i)))

OESy i=3
o(elp.a}

(taCasp) ia(asp), fa(arp))  (taCasg), ialasg), falasg))

)

L |(ta@zp), iaCazp), fal@zp))  (talazg).ia(azg). faCa)l 175 o)
4.13. Theorem:
Let A be a neutrosophic matrix of order nxn. Then
Al =

(tA(“lpl)'iA(a.lpl)-fA(alpl)) . (tA(alpk)'iA(a.lpk)'fA(alpk))
(tA(akpl)'iA(a.kpl)va(akm)) ‘(tA(akpk)'iA(akp.k)'fA(akpk)) .

JAr1 2 Lk
(m qu-Pk)
where the summation is taken over all Py Py D, €
{1,2, ...,n} suchthatp, < p, <+ < py.

P1<p2<<pk

A; 12 .k isthe matrix obtained from A by striking out the row1,
(101 pz-.-pk)
the row 2, ..., the row k, the column p,, ..., and the column p,,.

Proof

The Proof of this theorem is like the Proof of theorem 4.12.

4.14. Lemma:

(tA (a11),ia(a11), fa (‘111)) (tA(au): ia(aiz), fA(au))

Let A =
A= (aaz), inar), falaz)  (taCaza) ia(aza), falass))

neutrosophic matrix. Then

(tA (a11),ia(as1), fa (an)) (tA (a12),ia(as2), fa (a12))
(tA (a11),iaas1), fa (021)) (tA (a12),ia(as2), fa (a1z))

(tA (az1),ia (az1)'fA(az1)) (tA (az2),ia(azz), fa (azz))
(tA (az1), 14 (az1)'fA(a21)) (tA (az2),i4(az2), fa (azz))

Proof

< |4].

We have that

(tA (a11),ia(as1), fa (an)) (tA (a12),ia(as2), fa (a12))
(tA (a11),iaas1), fa (021)) (tA (a12),ia(as2), fa (a1z))

(tA (az1),ia(az1), fa (1121)) (tA (az2),ia(azz), fA(aZZ))
(tA (az1),i4(az1), fa (1121)) (tA (az2), ia(az,), fA(azz))

< (@ iaa), fal@i)- (ta(@r), ia (a1, fa(ar2)) ).
. ((tA (az1),ia(azy), fa (az1))- (tA(aZZ)' ia(az2), fa (azz)))

= (tA (a11),ia(as1), fa (a11))- (tA (az2), ia(az,), fa (azz))
+ (talarz), ia(asy), fa(ar2)- (taaz0), ia(azy), falazy)) = |Al

4.15. Definition:

Let A be a neutrosophic matrix of order n x n. The matrix A,_q is
the neutrosophic matrix that is a result of A by replacing the row q by
the row p from A.

4.16. Theorem:

Let A be a neutrosophic matrix of order nxn. Then
D |Aa-)|-[Ae-n| < 141

2) |Agopl-[Ap-n| < 141

Proof

1) By the theorem 4.12, we can write:

[4a-a|-[4-o]

- <Z (CICHIACHIACH) I CICHIACHIACH))
p<q (tA(alp)'iA(alp)'fA(alp)) (tA(alq),iA(alq),];(alq))

Z (tA(aZr)' iA(aZT)'fA(azr)) (tA(azs)' iA(azs)'fA(aZS)) |A -
’ = (tA(aZr)' iA(aZT)va(aZT)) (tA(aZS)' iA(GZs)-fA(Clz:)) ’ (r s)

<Z (tA(alp), iA(alp)'fA(alp)) (fA(“lq)r iA(am),fA(am))
a p<q (tA(aZT)r ig(azr), fA(aZT)) (tA(aZS)v igazs), fA(‘lZs))

r<s
(tA(alp),iA(alp).fA(al,,)) (tA(“lq)'iA(ala)'fA(alq))
(taCazr)s ia(az), falaze))  (talaze), ia(azs), falazs))

).

A(l 2)

TS

1)

)

)

A2
»a)

Az
& G

(tA(alp)' ia(asp), fA(alp)) (tA(alq)» iA(alq),fA(alq))
(ta(azp). ia(azp). falazp))  (ea(azq). ia(azq). falazq))

By the theorem 4.12, we know

(’fA(alp)r iA(“lp)va(alp)) (tA(alq)r iA(alq)rfA(alq))
(’fA(GZp)' ia(azp), fA(“Zp)) (tA(an): iA(an)'fA(am))
If(p,q) = (1,2) & (r,s) = (1,3),then

(tA (a11), ia(ayr), fA(all)) (fA(fllz). ia(ai2), fa (‘112))
(tA (a21),ia(az1), fA(a21)) (tA(aZS)r ig(azs), fA(aZ3))

12
= (o a)

=4

12
= o)

A0y

ey
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= ((fA(an). ig(as1), fa (all))- (tA (a23),ia(az3), fa (azs))

+ (ta(@12), ia(a12), falas2)). (talazy), iA(az1)rfA(a21)))- AG i) . AG 2
= (tA(all)r iA(all)rfA(all))- (tA(a23)r ia(az3), fa G 2) AG i)
+ (ta(@12), ia(@12), fa(a12)). (taaz1), ia(aze), falazn)). AG i) . AG 5)

= (tA(all): iA(all)rfA(all))' (tA(az3): iA(aZ3)rfA(aZ3))' |AG ;)

(@120 a2, (@) (eaa), ), faa): 4 2

(tA(all) ia(a11), faCain))  (talass), iaCass), falass)) |A z
(tA(au) i2(a21), fa(az1))  (taazs), iaazs), falaza))|’
(taarn), ia(arn), faCa1n))  (talasz) ia(as2), fulass)) |A
(tA(azl)'iA(”’Zl)lfA(aZl)) (tA(G-ZZ)I iA(aZZ)IfA(aZZ)) . (i i)

< |Al + |Al = |4l
Considering all the coordinates(r,s) # (1,2) involved in (1,3) and
(n — 1,7n), we obtain that,

(tA(all): ig(as1), fA(all)) (tA(an): ig(asz), fA(an))
(tA(aZT)r ’:A(QZT):fA(aZr)) (’24(‘125)' iA(aZS)JfA(QZS)) '

A < |A].
|(1§) 4]

T

If we apply a same argument forany p,q € {1,2,...,n} ;p <q,

this completes the Proof.

2) The Proof as (1).
4.17. Example:

[ (07,02,01)  (0.2,0.2,0.5)
Lecd = [(o 250.11,0.2) (0.1,0,0. 14)]'The"

p [(070201) (020205)]
-2 7 1(0.7,0.2,0.1)  (0.2,0.2,0.5)

A B [(0.25,0.11,0.2) (0.1,0,0.14)]
(-1 ™ 1(0.25,0.11,0.2)  (0.1,0,0.14)]

We have |Agop| = (0.1,0,0.2),|4¢-z| = (0.2,0.2,0.5) and 4| =
(0.2,0.11,0.14).
Therefore, [A (3.2 |A@o1y| = (0.1,0,0.5) < |Al.

4.18. Example:

(0.3,0.1,0.2)  (0.11,0.45,0.23) (0.33,0.5,0.1)
(0.22,0.4,0.16)  (0.4,0.2,0.1)  (0.7,0.2,0.1) |. Then
(0.9,0.1,0.2) 0,0.1,02)  (0.15,0.4,0.9)

LetA =

(0.3,0.1,0.2) (0.11,0.45,0.23) (0.33,0.5,0.1)
Agoy = [(03,0.1,02) (0.11,045,0.23) (0.33,0.5,0.1)
(0.9,0.1,02)  (0,0.1,02)  (0.15,0.4,0.9)

(0.3,0.1,0.2)  (0.11,0.45,0.23) (0.33,0.5,0.1)
Agos = ((022,04,0.16)  (0.402,0.1)  (0.7,02,0.1)
(0.22,0.4,0.16)  (0.4,0.2,0.1)  (0.7,0.2,0.1)

We have |[Ags|=(0.3,0.2,0.16), |A;-2| = (0.11,0.2,0.2) and
|A] = (0.33,0.4,0.2).

Therefore, |45-3)|- |A(1-2)| = (0.11,0.1,0.2) < |Al.

4.19. Remark:

If Ais a classical matrix of order n x n, then we know that |A| =0,
when the row p equals to the row g (p # g). But this problem in
neutrosophic matrices is different, as in the previous examples.

4.20. Theorem:

Let A be a neutrosophic matrix of ordern x n.Then
|A. adj(A)| = 1Al = ladj(4). Al.

Proof

We prove that |A. adj(A)| = |Al.

First, we considern = 2:

Let A = [(tA(all): ia(a11), falasn))  (talasz), iaasz), falas2)) .
H (taCaz)ia(azy), fa(azn))  (talaza), ia(asy), falass))
us,

adj(4) = [(tA(azz), iA(aZZ)'fA(aZZ)) (tA(alz)r iA(alz)'fA(alz))]

(talaz1),ia(@z1), fa(az1))  (talasn), ia(ass), falass))
= Aadj(4) =

141 (6@ (@), fa (@) (6a(@r2), ia @), fa(s2))

(ta(a20), 1a(@21), fa(@20))- (ta(022), 1a(a22), fa(022)) 14l
= |A.adj(A)I

=|A| + (tA(all)' iA(all)AfA(all))' (tA(alz)r iA(a1z)»fA(‘112))-
. (tA(au), iA(aZI)'fA(QZI))' (tA(aZZ)- iA(aZZ)'fA(aZZ)) = |A|

Next, we consider n > 2, we have

A.adj(A) =

Z(tA(au) ig(ase), fA(au)) |4yl Z(tA(alt) ia(ase), fA(alt)) |Ap

t=1 t=1

Z(rA(ano (@) fa(@)) gl Z(a(am).i,,(ano.ﬁa(am)).|Am|
=1

[Z(tA(an) lA(alt) fA(alt)) IA]tI

= |A.adj(A)| = Z 1—[ <Z(tA(alt) is(ay), fA(azt)) IAG(l)[|>

OESy i=1

(1) If 0 = e, where e is the identity of the group S,,, then
I 1(2 1(tA(alt) is(a), fA(aLt)) IAa(z)tI) [Al.

(2) Suppose that there exists k € {1,2, ...,n} such that G'(k) =k.
Then

Z(tA(akt) ia(ake), fA(akt)) IAJ(k)tI

Z(rA(akt) 4@, fa(ak)) - [Aiel = 141,

and
[] (Z(t,a(an), ia (@), f1(@0)) - o]

)
)

= (Z (tA(alt): iA(alt):fA(alt)) . IAa(l)tI - A] ...
Z( ta(ane), a (@, fa(@)). IAa(nnI)
TAL

(3) Assume that a(k) #k for all ke {1,2, ,n} . The
permutation ¢ can be writtenas ¢ = 6,0, .. ¢
disjoint cycles.

If o, = (1 2), we have

(Z (tA(alt)- ia(aie), fa (au)) - IAa(l)t I)

si 01, Oy, ..., Og are
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(Z (tA(aZt)v ia(aze), fa (a2t)) . IAU(Z)t I)

= <Z (tA (a11), ia(asy), fA(alt)) . |A2t|>-

t=1

-(Z(tA(an)» iA(azt)'fA(aZt)) . |A1c|> = |A(1a2)|' IA(Zﬂ)I < |A|

t=1
By the same argument, if o; = (p q), wherep,q € {1,2,...,n}, we

can prove that

I (Z(r,a(an), RCOYACHE IAa(mI) < 14|

i=1 t=1
If 6, = (p1 D2 - Py), Where py, 0y, ..., 0 € {1,2,...,n}, then we see
that

(Z (talap,e). ialap,e). falan,e))- |Aa(p1)t|> -

t=1

. i (tA (aprt)' iy (aprt)JfA (aprt)) . IAa(pr)t|>
= (i (tA(aplt), iA(aplt)'fA(aplt)) . IApzt|> e

. (Z (ta(ap,0),ia(ap,e), fa(@n,e) ). IAWI>

t
IA(szm)I' IA(nzapz)I IA(pﬁpr)I < |4]; by theorem 4.16.

According to the above discussions, for any o € S,,, we obtain that
n

I (Z(r,a(an), (@), fa(ai)) IAa(mI) < 14|
SNATddj )] = 14].
Similarly, we can prove that |adj(4). A| = |Al.

5. Conclusion

In our work, we have studied some properties of the determinant of a
neutrosophic matrix. Most of the proven properties are similar to the
properties of the determinant of a classical matrix. In addition, the
important relationship |A4.adj(A)| = |A|l = |adj(A).A|l has been
proven.
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