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ABSTRACT 
 

The presence of blade surface cracks creates chances for vibration propagation that affects wind turbine performance. This study examines the effects of 
transverse cracks on the vibration levels and power output of wind turbine systems. Multiple regression models are developed as predictive tools to highlight the 
impact of transverse crack sizes and variations in rotational speed on vibration levels and power generation. Grey relational analysis is used as an optimisation 
technique to identify optimal settings for maximum power output and minimum vibration levels. By modelling and analysing these factors, the study reveals a 
significant correlation between increased crack size and elevated vibration levels, which can compromise structural integrity. Additionally, while higher rotational 
speeds initially boost power output, they also lead to exponential increases in vibration, exacerbating the risks associated with blade defects. The findings 
emphasise the critical need for a balanced approach in optimising turbine performance, introducing a novel approach to speed management and vibration 
control, which is employed in this study. The research suggests potential avenues for future exploration, including the development of advanced materials and 
design innovations aimed at mitigating these risks, enabling safer and more efficient turbine operation. 
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1. Introduction 
Wind energy has rapidly gained prominence as a key renewable 
energy source, motivated by global implementation of energy 
efficiency and reliability (Wagner, 2015). The evolution of the wind 
energy sector from constant-speed wind turbine systems to more 
advanced systems reflects industrial innovation (Polinder, 2011). 
Direct-drive wind turbine systems are particularly valued for their 
reliability in wind turbine applications, especially as wind power is 
increasingly integrated into the grid (Blaabjerg and Ma, 2017).  

Wind turbines are complex machines that convert wind energy into 
electrical power and are composed of key components such as 
blades, rotors and generators (Al-Hinai et al., 2024). Horizontal-axis 
turbines are a more popular type and feature three blades and high-
speed asynchronous generators (Lubosny, 2003). These systems rely 
on the dynamic wind pressure exerted on the blades to be converted 
into electrical energy. The efficiency of this process depends on the 
durability of the blades, which must withstand significant mechanical 
and environmental stresses (Pacheco et al., 2024). However, blade 
defects remain a challenge, impacting turbine performance and 
longevity and leading to increased maintenance, downtime and 
safety risks (Liu et al., 2015). Fatigue-related failures are common, 
particularly in blades and joints, with transverse fracture faults being 
a significant issue, as shown in Figure 1 (Sutherland, 1999). Crack 
formation in blades typically occurs in three steps: crack initiation, 
stable crack extension and eventual fracture. The total fatigue life of 
a blade can be expressed as the sum of crack initiation life and crack 
propagation life: 

Ntotal = Ninitiation + Npropogation 

Wind turbine vibrations present significant challenges to the system's 
performance and longevity, originating from aerodynamic forces, 
mechanical imbalances and structural defects (Xie and Aly, 2020). 
Various control and vibration monitoring techniques are employed to 
detect and mitigate these issues (Barszcz, 2019). Experimental setups 
and simulations are vital for studying these vibrations and optimising 

turbine performance (Tibaldi et al., 2016). Additionally, regression 
modelling and optimisation techniques are widely used in wind 
energy research to predict performance metrics in order to enhance 
efficiency (Balasubramanian et al., 2020). 

Figure 1: Transverse defects on wind turbine blades (Wang et al., 2022) 

 
This research seeks to optimise the wind turbine performance while 
minimising vibration levels. This involves an innovative analysis of a 
wind turbine simulation system with transversely defective blades 
operating at various rotational speeds. The study identifies the 
optimal settings that enhance power output while reducing vibration 
levels, making proactive maintenance through condition monitoring 
increasingly essential as wind turbines continue to grow in capacity 
(Koulocheris et al., 2013). The structure of this paper is as follows: 
Section 2 reviews the existing literature on wind turbine technology 
and vibration challenges; Section 3 outlines the methodology used, 
including the simulation setup and data analysis techniques; Section 
4 presents the results, focusing on the optimisation of power output 
and vibration reduction; and finally, Section 5 concludes with the 
study’s contributions and suggestions for future research. 
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2. Literature Review 
In recent years, wind energy has gained importance as a critical 
source of renewable energy. With advancements in wind turbine 
technology, the status of effective condition monitoring and vibration 
analysis has increased to ensure optimal performance and 
operational safety. As wind turbines become larger and are deployed 
in remote areas, condition monitoring becomes vital (Yang et al., 
2009). 

Wind turbine blades are susceptible to various forms of damage and 
wear over time, leading to increased vibrations and decreased 
performance. Research has identified numerous technologies and 
methods to mitigate these vibrations and enhance wind turbine 
efficiency. Integrated approaches and optimisation algorithms have 
been explored extensively for vibration control and performance 
optimisation. Skrimpas et al. (2016) proposed an algorithm for 
effective along-wind vibration control of large wind turbines, 
demonstrating the potential of algorithmic solutions for dynamic 
response issues (Skrimpas et al., 2016). Similarly, Sarkar and 
Chakraborty (2018) investigated optimal designs for long-wind 
vibration control, showcasing the synergy of advanced control 
algorithms and passive vibration control devices (Sarkar and 
Chakraborty, 2018). 

Machine learning algorithms have also shown promise in structural 
health monitoring, as highlighted by Flah et al. (2020), who 
conducted a systematic review on the subject (Flah et al., 2020). 
Conversely, Sheng (2012) focused on vibration analysis in the ‘Wind 
Turbine Gearbox Condition Monitoring Round Robin Study’, 
providing insights into the specific challenges and requirements of 
monitoring turbine gearboxes (Sheng, 2012). Liu et al. (2020) 
examined fault diagnosis of industrial wind turbine blade bearings 
using acoustic emission analysis, demonstrating its effectiveness in 
harsh conditions and slow-speed operations (Liu et al., 2020). 

Innovative methods continue to emerge. Joshuva and Sugumaran 
(2017) introduced a new blade condition monitoring technique based 
on the transmissibility of frequency response functions, utilising signals 
from multiple sensors for both damage detection and location (Joshuva 
and Sugumaran 2017). Ou et al. (2017) proposed a novel intelligent 
icing detection method for blades using SCADA data, addressing the 
significant issue of ice accretion (Ou et al., 2017). Yang et al. (2015) 
emphasised the critical role of structural health monitoring and 
condition monitoring in assessing wind turbine components, while 
Antoniadou et al. (2015) discussed the complexities of damage 
detection in offshore wind turbines, highlighting the need for effective 
structural health monitoring and condition monitoring strategies (Yang 
et al., 2015). Liu et al. (2019) explored non-contact methods such as 
thermography for blade icing detection, offering insights into 
subsurface damage detection (Liu et al., 2019). Florian and Sørensen 
(2015) stressed the need for reliable remote monitoring systems and 
proposed a blade lifetime assessment model for preventive 
maintenance planning (Florian and Sørensen 2015). Kusnick et al. 
(2015) focused on intelligent condition monitoring systems for rotor 
imbalance detection (Kusnick et al., 2015). 

Vibration analysis remains a cornerstone of wind turbine monitoring. 
Dong et al. (2018) studied structural vibration monitoring and 
operational modal analysis of offshore wind turbines, enhancing the 
understanding of vibration characteristics (Dong et al., 2018). Liu et 
al. (2020) introduced an empirical wavelet thresholding method for 
blade-bearing fault detection, while Teng et al. (2019) proposed a 
novel vibration model for diagnosing compound faults in gearboxes 
(Liu et al., 2020 and Teng et al., 2019). He et al. (2016) developed an 
innovative order-tracking method for planetary gearbox vibration 
analysis (He et al., 2016). 

Blade defects significantly impact turbine performance and reliability. 
Manufacturing flaws are a primary cause of blade repairs and failures. 
Computational fluid dynamics can effectively analyse faults in 
vertical axis wind turbines, with defects affecting torque output. 
Researchers have developed probabilistic models to assess blade 
reliability, treating defects as uncertainty variables (Riddle et al., 
2018). Monte Carlo simulations describe failure probabilities, 
offering more accurate reliability assessments and potential 
reductions in design conservatism. 

Despite extensive research on vibration analysis and condition 
monitoring, comprehensive studies on the performance of turbines 
with defective blades are lacking. Castorrini et al. (2019) conducted a 
computational analysis of performance deterioration due to 
environmental erosion, but more research is needed on defective 
blades' impact on overall performance (Castorrini et al., 2019). 
Research focused on the aerodynamic shape optimisation of blades 
using advanced computational models and the development of novel 
optimisation algorithms, such as the artificial bee colony algorithm 
for shape optimisation (Derakhshan et al., 2015). Non-stationary 
signal processing techniques applied to vibration analysis and the use 
of vibration and power curve analysis for detecting icing on blades 
represent potential areas for future research (Maheswari and 
Umamaheswari, 2017). As the wind energy industry expands, 
reducing operation and maintenance costs while improving 
reliability remains a priority (Tchakoua et al., 2014).  

3. Methods and Materials 
To investigate the performance of a wind turbine simulator (WTS), 
real wind speed data from the town of Sohar in Oman was used as a 
hypothetical operating range of shaft rotational speed using WTS 
conversion. The WTS model employed in this research work was the 
SpectraQuest (SQ) type that used a VibraQuest (VQ) simulation 
software and data acquisition system. This investigation aimed to 
reduce the generated average of the vibration waveform range. This 
is basically the difference between the average of (m) positive peaks 
and the average of (n) negative peaks, as shown in Figure 2. When the 
vibration level was reduced, the WTS performance increased. The 
following equations were used to calculate the average of positive 
peaks, the average of negative peaks and the vibration level: 
Average	of	positive	peaks		

= 	
∑ (positive	vibration	peaks)!
"#$

m  

Average	of	negative	peaks	
= 	
∑ (negative	vibration	peaks)%
"#$

n  

Vibration	level		 = 	average	of	positive	peaks	
− 	average	of	negative	peaks 

This section involved 1) an experimental setup of the SQ WTS; 2) the 
Taguchi design of the experiment (DoE); 3) experimental testing of 
the WTS as per DoE; 4) analysing the generated vibration waveform 
and power output; 5) analysing Taguchi response; 6) regression 
modelling of vibration level and power output; and finally 7) 
optimising the multi-responses using grey relational analysis (GRA) 
and sensitivity analysis.  

Figure 2: Research concept 
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Experimental setup: The SQ WTS used in this research was of a three-
blade type horizontal-axis wind turbine, as shown in Figure 3. The 
base dimensions were 2.991 m × 2.438 m, the centreline height was 
2.369 m, the swept blade diameter was 3.3 m, and the weight was 
222.7 kg. A tachometer and an accelerometer were mounted on the 
rotational shaft to measure the rotational speed and vibration level in 
one direction of vibrational excitation, respectively (Koulocheris et 
al., 2013). A data acquisition system read the signals from these 
sensors and sent them to the VQ simulation software for analysis and 
to generate vibration reports, as shown in Figure 4. The three 
transversely defective blades used in this research work are shown in 
Figure 5. 

Figure 3: SQ WTS Figure 4: VQ analysis software 

  
Figure 5: Three transversely defective blades (three crack levels) 

 

Taguchi design of experiments: The experimental work was planned 
by Taguchi design of experiments (DoE) with two main independent 
parameters; namely A: crack size and B: shaft rotational speed. The 
transverse crack size varied from 33.4 mm to 74.0 mm, and finally to 
98.8 mm, while the shaft rotational speed varied from 50 rpm to 100 
rpm, and finally to 150 rpm, as a hypothetical operating range of 
Sohar wind speed using WTS conversion ratio. The total number of 
experimental tests performed was L9 (nine tests as per the DoE). The 
responses were the generated vibration level (average of positive 
peaks and average of negative peaks) and power output.  

Experimental testing of the WTS as per DoE: This involved a 
systematic replacement of one of the three blades with transversely 
defective blades. The defective blades had crack sizes of 33.4 mm, 
74.0 mm and 98.8 mm, respectively. The testing started with the first 
defective blade of 33.4 mm under a shaft rotational speed of 50 rpm, 
then 100 rpm, and finally 150 rpm. The same testing was repeated for 
defective blades of 74.0 mm and 98.8 mm, respectively.  

Vibration waveform and power output analysis: The accelerometer 
read the vibration signals and sent them to the data acquisition 
system that transferred them to the VQ software to generate the 
vibration report in MS Excel format. The generated report showed a 
defined set of 10,000 vibration waves (positive and negative 
waveform peaks) for each test that were used later for vibration 
analysis. The WTS had a three‐phase field-controlled alternator to 
produce the power output (voltage and current). The control 
interface of the WTS displayed both voltage and current that 
indicated the amount of field power output.  

Regression modelling: The regression modelling for vibration levels 
and power output was performed to develop the following regression 
models; linear, linear and squared, linear and interaction, and finally 
the full model. The regression models were compared for the best fit 
with respect to the R-squared values for each response.  

Optimisation of multi-responses using GRA: This research work 
aimed to optimise the performance of wind turbine systems while 
mitigating the vibration that occurs. For the average of negative 
vibration peaks and power output, the higher-the-better criterion was 
used, while for positive vibration peaks, the lower-the-better criterion 
was used. The normalisation of the original sequence of each 
response was calculated as follows: 

For higher-the-better criterion:               𝑌&' =
(!")*&+((!")

*./((!"))*&+((!")
 

For lower-the-better criterion:                𝑌&' =
*./((!"))(!"

*./((!"))*&+((!")
 

where xij is the measured response, min(xij) is the minimum of xij and 
max(xij) is the maximum of xij, i is the response variables and j is the 
experiment number. The deviation sequence (distinguishing 
coefficient) ∆ij was calculated as follows:  

∆&'= 𝑚𝑎𝑥(𝑌&') − 𝑌&'  

where max(Yij) is the expected sequence, Yij is the comparability 
sequence and ∆ij is the deviation sequence of max(Yij) and Yij. The 
grey relational coefficient ξij was calculated as follows: 

𝜉&' =
𝑚𝑖𝑛(∆&') + 𝜁 ×𝑚𝑎𝑥(∆&')
∆&' + 𝜁 ×𝑚𝑎𝑥(∆&')

 

where ζ is the differentiating coefficient, 0≤ζ≤1, and 0.5 is the widely 
accepted value. The grey relational grade (GRG) (γj) for each 
experiment was computed as follows, for n number of responses: 

𝛾' =
∑ 𝜉&'+
&#$
𝑛  

If larger γj is obtained, then the equivalent set of process parameters 
is nearer to the most favourable optimal setting. 

4. Results and Discussion 
The generated vibration reports by the VQ software are discussed in 
this section, with regression analysis, optimisation and sensitivity 
analysis.  

4.1. Initial Observations: 
During the initial setup phase, preliminary observations were made 
to understand the baseline performance of the WTS with both 
healthy and defective blades. The presence of a transverse defect in 
one blade led to increased vibration levels and fluctuations in power 
output. These observations were important for this research work, as 
they showed the impact of blade defects under varying conditions: 
• For healthy blade performance: The simulator with three healthy blades 

exhibited stable operational characteristics with minimal vibration 
levels. Power output increased consistently and within expected ranges 
for the given rotational speeds. The vibration waveforms recorded were 
smooth and showed almost no signs of irregularities, indicating the 
balanced and proper functioning of the blades. 

• For defective blade performance: Replacing one healthy blade with a 
transversely defective blade resulted in noticeable changes. Increased 
vibration levels were immediately observed. There was a significant 
impact of the defect on the turbine's dynamic behaviour. The 
vibration waveforms displayed irregularities and higher peaks 
compared to the healthy blade setup, indicating the potential for 
structural instabilities. The power output was observed to fluctuate 
more with the defective blade. This reflected the impact of increased 
vibrations and possible energy losses. 

4.2. Waveform Analysis Results: 
The vibration signals were analysed and recorded using VQ software. 
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This software provides a detailed time-domain waveform for each test 
scenario. Figure 6 illustrates the vibration waveforms generated by VQ 
software. The vibration levels increased as the rotational speed 
increased. 

Figure 6: Vibration waveforms: a) at 50 rpm (crack size = 33.4 mm), b) at 100 rpm (crack size = 33.4 
mm), c) at 150 rpm (crack size = 33.4 mm), d) at 50 rpm (crack size = 74.0 mm), e) at 100 rpm (crack 
size = 74.0 mm), f) at 150 rpm (crack size = 74.0 mm), g) at 50 rpm (crack size = 98.8 mm), h) at 100 

rpm (crack size = 98.8 mm), and i) at 150 rpm (crack size = 98.8 mm) 

 

The detailed performance of the experimental work was performed 
for nine tests, considering the Taguchi design of the experiment. In 
each test, the VQ software generated a waveform report of a set of 
10,000 vibration waves with positive and negative peaks. At the same 
time, the three‐phase field-controlled alternator produced the power 
output (voltage and current) displayed on the control interface of the 
WTS. Table 1 shows the measured responses of the experimental 
work. 

Table 1: Measured responses from experimental tests 
 Input Parameters Responses 

Test
s 

Crack Size, 
A (mm) 

Rot Spd., B 
(rpm) 

Avg. (negative 
peaks) (m/s2) 

Avg. (positive 
peaks) (m/s2) 

Vibration 
Level (m/s2) 

Power 
output 

(W) 
1 33.4 50 -1.361 1.384 2.745 1.804 
2 33.4 100 -4.990 4.647 9.637 9.912 
3 33.4 150 -5.940 5.757 11.697 23.622 
4 74.0 50 -1.337 1.470 2.807 1.539 
5 74.0 100 -5.173 4.646 9.820 9.632 
6 74.0 150 -6.105 6.116 12.221 23.331 
7 98.8 50 -1.390 1.464 2.855 1.478 
8 98.8 100 -5.171 4.750 9.921 9.475 
9 98.8 150 -6.087 6.125 12.212 23.037 

4.3. Taguchi Response Analysis: 
Taguchi's response analysis focuses on optimising performance 
metrics through the design of experiments and the minimisation of 
variability. The experimental investigations on WTS with a transverse 
cracked blade were analysed using Taguchi’s response analysis, 
response for means and response for signal-to-noise ratios (SNR). 
The influence of selected input process parameters on various 
performance measures such as average of peaks (negative and 
positive), vibration level and power output are detailed. 

4.3.1. Taguchi’s Response Analysis for the Average of Negative Peaks 
In this case, the process parameters, crack size (A) and rotational 
speed (B), were analysed for their effects on the average of the 
negative side of vibration waveform peaks. In Table 2, the mean and 
SNR values illustrated how changes in each factor (A or B) impact the 
system's performance. Considering the higher-the-better criterion, 
the best possible set of process parameters observed from the 
analysis was A1B1, which means a crack size of 33.4 mm and a 
rotational speed of 50 rpm.  

 
Table 2: Response table for the average of negative peaks 

Level Means Signal-to-Noise Ratios 
 A B A B 

1 5.903 8.637 14.97 18.73 
2 5.795 4.889 14.75 13.78 
3 5.784 3.956 14.74 11.94 

Delta 0.119 4.681 0.22 6.78 
Rank 2 1 2 1 

4.3.2. Influence of Process Parameters on the Average of Negative 
Peaks 

Focusing on the average of negative peaks of the vibration waveform, 
it was observed that varying crack sizes had a small impact on the 
negative peak values. The mean values increased slightly from level 1 
to level 3. This indicated that larger cracks resulted in slight increases 
in negative peak amplitudes. However, the variation in negative 
peaks associated with increasing the rotational speed is far more 
pronounced. As the rotational speed escalated from level 1 to level 3, 
negative peak values decreased significantly. This reflected a 
substantial negative correlation between higher rotational speeds 
and the average of negative peaks. The delta value of 4.681 further 
emphasised that rotational speed is considerably more influential on 
this response than the size of the crack. 

4.3.3. Taguchi’s Response Analysis for the Average of Positive Peaks 
In this instance, the average of the positive side of the vibration 
waveform peaks was examined in relation to the process parameters 
of crack size (A) and rotating speed (B). The performance of the WTS 
was impacted by changes in each factor (A or B), as seen by the mean 
and SNR in Table 3. The optimal set of process parameters found in 
the analysis, while taking into account the lower-the-better criterion, 
was A1B1 also, which corresponded to a crack size of 33.4 mm and a 
rotational speed of 50 rpm.  

Table 3: Response table for the average of positive peaks 
Level Means Signal-to-Noise Ratios 

 A B A B 
1 3.930 1.440 -10.458 -3.162 
2 4.078 4.681 -10.807 -13.407 
3 4.113 5.999 -10.863 -15.558 

Delta 0.184 4.560 0.406 12.396 
Rank 2 1 2 1 

4.3.4. Influence of Process Parameters on the Average of Positive 
Peaks 

Examining the average of positive peaks of the vibration waveform, 
there was found to be a similar trend. The means showed a gradual 
increase from level 1 to level 3 as crack size increased. This suggested 
that larger cracks can lead to elevated positive peak amplitudes. 
However, the impact of rotational speed was once again more dramatic. 
The SNR declined steeply from level 1 to level 3. This indicated that 
higher rotational speeds correlate with significantly reduced positive 
peaks. The noticeable delta of 4.560 underscored how rotational speed 
influenced this parameter more strongly than crack size did, drawing 
parallels to the observed effects on negative peaks. 

4.3.5. Taguchi’s Response Analysis for the Vibration Level 
The present study also examined the impact of two process 
parameters, namely crack size (A) and rotating speed (B), on the 
vibration waveform level. Table 4 shows how variations in each 
factor (A or B) affected the system's performance. Based on the lower-
the-better criterion, A1B1, which indicated a crack size of 33.4 mm 
and a rotational speed of 50 rpm, was likewise the best feasible set of 
process parameters found in the analysis.  

Table 4: Response table for vibration level 
Level Means Signal-to-Noise Ratios 

 A B A B 
1 8.026 2.802 -16.604 -8.949 
2 8.283 9.793 -16.850 -19.817 
3 8.329 12.043 -16.926 -21.613 

Delta 0.303 9.241 0.322 12.664 
Rank 2 1 2 1 
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4.3.6. Influence Of Process Parameters on the Vibration Level 

The vibration level analysis further reinforced the conclusion 
regarding the dominant role of rotational speed. As crack size 
increased, the average vibration level also rose. This suggested that 
larger cracks contributed to a wider level of vibration. The delta value 
of 0.303 indicated a consistent effect, but the influence of rotational 
speed was markedly more significant. With a delta of 9.241, the 
widening of the vibration level at higher speeds (from 2.802 to 
12.043) highlighted that the increased rotational speeds led to 
substantial enhancements in the vibration profile, which correlated 
with the turbine's operational dynamics. 

4.3.7. Taguchi’s Response Analysis for the Power Output 

The present study tested the impact of the two process parameters on 
the power output. The performance of the system was impacted by 
changes in each factor (A or B), as shown by the mean and signal-to-
noise ratios values in Table 5. Considering the higher-the-better 
criterion, A1B3, which indicated a fracture size of 33.4 mm and a 
rotational speed of 150 rpm, was the best feasible set of process 
parameters found in the analysis.  

Table 5: Response table for power output 
Level Means Signal-to-Noise Ratios 

 A B A B 
1 11.779 1.607 17.505 4.088 
2 11.501 9.673 16.925 19.710 
3 11.330 23.330 16.725 27.358 

Delta 0.449 21.723 0.779 23.270 
Rank 2 1 2 1 

4.3.8. Influence Of Process Parameters on The Power Output 

When examining the generated power output, the effects of both 
parameters became even clearer. Here, as crack size increased, the 
power output consistently decreased. This indicated that larger cracks 
adversely impact energy production capability, which was illustrated 
by a delta of 0.449. In stark contrast, the influence of rotational speed 
was overwhelmingly positive. As rotational speeds rose, the mean 
power output surged dramatically, from 1.607 at level 1 to an 
impressive 23.330 at level 3, with a delta value of 21.723.  

4.4. Analysis of Variance for Measured Performance: 
Analysis of variance (ANOVA) is a statistical tool used to compare the 
means of input parameters to determine the significant differences 
between them. It assesses the observed variations in data due to real 
differences between input parameters. The ANOVA for the measured 
performance in WTS showed the significance of the input parameters, 
crack size (A) and rotational speed (B), on the system's responses. 
ANOVA was used on the performance measures at 95% confidence 
level and was computed using Minitab statistical software. In this 
context, ANOVA was likely to reveal that rotational speed (B) was the 
more dominant factor influencing both the vibration level and power 
output. Conversely, crack size (A) showed a statistically secondary 
role effect.  
• For the average of negative peaks, the analysis revealed that crack size 

(A) had 2 degrees of freedom (DF) with an adjusted sum of squares 
(Adj SS) of 0.0261 and an adjusted mean square (Adj MS) of 0.0130. 
This yielded an F-value of 3.73 and a P-value of 0.122. In contrast, 
rotational speed (B) had 2 DF, an Adj SS of 36.8381, an Adj MS of 
18.4190, an F-value of 5,270.03 and a significant P-value of 0.000. 
The error term was attributed to 4 DF and contributed an Adj SS of 
0.0140 and an Adj MS of 0.0035. This brought the total Adj SS to 
36.8781. 

• For the average of positive peaks, crack size (A) also had 2 DF with an 
Adj SS of 0.0569 and an Adj MS of 0.0284. This resulted in an F-value 
of 2.65 and a P-value of 0.185. Rotational speed (B) exhibited a much 
larger effect, with 2 DF, an Adj SS of 33.0363, an Adj MS of 16.5181, 
an F-value of 1,538.58 and a P-value of 0.000. The error component 
again had 4 DF, yielding an Adj SS of 0.0429 and an Adj MS of 0.0107. 
This culminated in a total Adj SS of 33.1361. 

• In the case of vibration range, crack size (A) was characterised by 2 DF, 

an Adj SS of 0.160 and an Adj MS of 0.0798. This led to an F-value of 
4.69 and a P-value of 0.089. Rotational speed (B) highlighted a more 
substantial impact. It reflected in its 2 DF, an Adj SS of 139.328 and an 
Adj MS of 69.6642, which produced an F-value of 4,096.79 and a P-
value of 0.000. The error term had 4 DF with an Adj SS of 0.068 and 
an Adj MS of 0.0170. This resulted in a total of 139.556 for the Adj SS. 

• Lastly, for power output, crack size (A) held 2 DF with an Adj SS of 
0.308 and an Adj MS of 0.154. This resulted in a significant F-value of 
30.03 and a P-value of 0.004. Rotational speed (B)demonstrated an 
even stronger statistical significance, with 2 DF, an Adj SS of 723.471, 
an Adj MS of 361.736, an F-value of 70,470.46 and a P-value of 0.000. 
The error component contributed 4 DF with an Adj SS of 0.021 and an 
Adj MS of 0.005. This led to a total Adj SS of 723.800. 

The ANOVA results demonstrated that rotational speed (B) was the 
higher significant factor influencing all the performance measures in 
the wind turbine simulator, with consistently high F-values and very 
low P-values across the board. While crack size (A) showed less 
influence, on the vibration level, it was mostly significant and, on the 
power output, it was more significant. However, its significance is 
considerable if the WTS run for a longer time. 

4.5. Multi-Regression Modelling Results: 
Regression is an effective statistical method used to model the 
relationship between dependent variables and independent 
variables. It helps to predict the dependent variable's value based on 
the known values of the independent variables. In this section, a 
regression analysis was conducted to quantify the relationship 
between crack size (A) and shaft rotational speed (B) as predictors 
and the average of negative peaks, average of positive peaks, 
vibration level and power output as responses. Using Minitab 
software in the regression analysis, four types of regression models 
were developed to determine the best model fit for WTS 
performance.  
• The first model is a linear regression model that incorporates two 

input variables: crack size (A) and rotational speed (B).  
• The second model, termed linear plus squared, not only includes the 

same linear input variables, A and B, but also adds squared terms for 
crack size (A²) and rotational speed (B²).  

• The third model is a linear regression model with interaction, which 
includes the linear variables A and B alongside an interaction term that 
represents the product of crack size and rotational speed (A × B).  

• Lastly, the fourth model (full quadratic model) encompasses all the 
components of the previous models, integrating the linear variables A 
and B, their squared terms A² and B² and the interaction term A × B. 
This comprehensive approach allows for a detailed exploration of 
how these variables collectively influence vibration range and power 
output. 

The R-squared values of the developed models were compared to 
determine the best-fit model. The regression models analysed in the 
study yielded various R² values, which reflect the proportion of 
variance explained by the models across the outcomes:  
• For the first model (linear regression model), the R² values were 

89.203% for the average of negative peaks (in m/s²), 94.279% for the 
average of positive peaks, 91.896% for the vibration range and 
97.838% for power output.  

• The second model (linear and squared) demonstrated a significant 
improvement, achieving R² values of 99.962% for average negative 
peaks, 99.870% for average positive peaks, 99.951% for vibration 
range and 99.997% for power output.  

• The third model (linear and interaction) showed the R² values slightly 
lower but still substantial, with 89.217% for average negative peaks, 
94.350% for average positive peaks, 91.931% for vibration range and 
97.840% for power output.  

• Finally, the fourth model (full quadratic), which incorporated linear, 
squared and interaction terms, attained R² values of 99.975% for 
average negative peaks, 99.941% for average positive peaks, 99.986% 
for vibration range and an impressive 99.999% for power output.  

From the developed regression models, the full quadratic model 
showed the best fit. The regression equations for the responses are: 
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Average	of	negative	peaks
= 5.30860287 − 0.0042579A
− 0.1580261B + 3.4165 × 10)0A1
+ 0.00056322B1 − 2.082 × 10)0A × B	 

Average	of	positive	peaks
= −3.7228 + 0.00262453A
+ 0.1193637B − 3.365 × 10)0A1
− 0.0003848B1 + 4.632 × 10)0A × B	 

Vibration	level = −9.0314029 + 0.00688248A
+ 0.27738983B − 6.781 × 10)0A1
− 0.000948B1 + 6.7141 × 10)0A × B	 

Power	output = −0.6459295 − 0.0032357A − 0.0039085B
− 2.9461 × 10)2A1 − 0.00111891B1
− 3.634 × 10)0A × B	 

4.6. Optimisation: 
The objective of this research was to optimise the performance of the 
wind turbine system by balancing the power output and minimising 
vibration levels. The optimisation process utilised GRA in conjunction 
with a full factorial design in Minitab software. The optimisation 
process resulted in defining the optimal settings of process 
parameters. The GRA focused on two primary criteria: maximising the 
power output (higher-the-better) and minimising the vibration level 
(lower-the-better). In this case, the vibration level is the level between 
average of positive peaks and average of negative peaks. This means 
that only vibration level and power output responses are considered 
in the optimisation process. By applying these criteria, a grey 
relational grade (GRG) was computed for each experimental test.  
• The first test received a Grade Relational Coefficient (GRC) of 1.000 

and a GRG of 0.668, ranking it second overall.  
• The second test reported a GRC of 0.407 and a GRG of 0.427, resulting 

in a seventh-place ranking.  
• The third test, notable for its strong performance, achieved a GRC of 

0.346 and a GRG of 0.673, earning the top rank of one.  
• The fourth test recorded a GRC of 0.987 and a GRG of 0.661, securing 

the third rank.  
• The fifth test had a GRC of 0.401 and a GRG of 0.421, placing it in 

eighth position.  
• The sixth test yielded a GRC of 0.333 and a GRG of 0.654, ranking fifth 

overall.  
• The seventh test obtained a GRC of 0.977 and a GRG of 0.655, which 

put it in fourth place.  
• The eighth test had a GRC of 0.398 and a GRG of 0.418, finishing 

ninth.  
• Finally, the ninth test achieved a GRC of 0.334 and a GRG of 0.642, 

resulting in a sixth-place ranking.  

The GRG combined the GRCs into a single performance score. The 
third test (A1B3) showed the highest GRG (0.673), giving it the top 
rank, which means crack size = 33.4 mm and rotational speed = 150 
rpm. This indicated the best overall performance. With higher GRG 
achieved, the third test was the best balance between vibration 
control and power output, making it a more optimal scenario. The 
confirmation of the results is shown in Table 6. The regression 
equation for GRG is:  
GRG = 1.3724 + 2.3 × 10)0A − 0.018779B

− 9.236 × 10)2A1 + 9.46 × 10)0B1
− 2.812 × 10)3A × B	 

Table 6: Initial and optimal setting for WTS performance analysis 
 Initial setting Optimal setting 

Parameters and levels A1B1 A1B3 
Average of negative peaks (m/s2) -1.361 -5.940 
Average of positive peaks (m/s2) 1.384 5.757 

Vibration level (m/s2) 2.745 11.697 
Power output (W) 1.804 23.622 

Grey relational grade 0.668 0.673 

4.7. Sensitivity Analysis: 
To illustrate how the values of independent variables, the crack size 
and rotational speed, can affect the dependent variables, the 
vibration levels and power output, the analysis can be extended using 
theoretical frameworks grounded in the observed trends and 

relationships derived from the tested scenarios. Assumptions can be 
made as follows: 1) the relationship between independent variables 
and dependent variables can be approximated linearly in the feasible 
operational range; 2) crack size will vary between 0 mm (no defect) 
to 100 mm (severe defect), while rotational speed will vary from 0 
rpm to 200 rpm, capturing both healthy operation and increasing 
operational stress; and finally, 3) vibration levels should be expected 
to increase with crack size and rotational speed, while power output 
should ideally increase with rotational speed but may decrease as 
crack size increases.  

Based on observed data, a hypothetical model can be defined using 
the following generalised equations capturing the relationships 
between the variables: 
𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛	𝑙𝑒𝑣𝑒𝑙	 = 	𝑐 + (𝑘1 × 𝑐𝑟𝑎𝑐𝑘	𝑠𝑖𝑧𝑒)

+ (𝑘2 × 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑝𝑒𝑒𝑑) 
𝑃𝑜𝑤𝑒𝑟	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	𝑑 + (𝑚1 × 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑝𝑒𝑒𝑑)

− (𝑚2 × 𝑐𝑟𝑎𝑐𝑘	𝑠𝑖𝑧𝑒) 
Where k1, k2, m1 and m2 are coefficients representing the sensitivity 
of the respective dependent variables to the independent variables, 
and c and d are constants representing baseline vibration levels and 
power output under ideal conditions (e.g. no defect and no rotational 
speed). The differing signs in the equations captured the nuanced 
effects of each variable on the system's performance. 

For simulated scenarios, to explore how the values of crack size and 
rotational speed affect vibration levels and power output, the 
following hypothetical values were considered: 
• Crack size (mm): 0, 33.4, 50, 74, 98.8, 100 
• Rotational speed (rpm): 50, 100, 150, 200 

The following hypothetical coefficients were assumed based on the 
given data: 
• k1 = 0.1 (increase of 0.1 m/s² for every mm of crack size) 
• k2 = 0.05 (increase of 0.05 m/s² for every rpm of speed) 
• m1 = 0.15 (increase of 0.15 W for every rpm of speed) 
• m2 = 0.02 (decrease of 0.02 W for every mm of crack size) 
• c = 1.5 (baseline vibration level with no defect) 
• d = 5 (baseline power output with no defect) 

Using these values, the vibration levels and power output were 
calculated. At a crack size of 0 mm and a rotational speed of 50 rpm, 
the vibration level measured 4 m/s², and the power output was 
recorded at 12.5 W. When the crack size increased to 33.4 mm and 
the rotational speed was set at 100 rpm, the vibration level rose 
significantly to 9.84 m/s², with the power output reaching 19.332 W. 
As the crack size continued to grow to 50 mm and the rotational 
speed increased to 150 rpm, the vibration level further escalated to 
14 m/s², while the power output increased to 26.5 W. At a crack size 
of 74 mm and a rotational speed of 200 rpm, the vibration level was 
measured at 18.9 m/s², producing a power output of 33.52 W. 
Conversely, at a crack size of 98.8 mm and a rotational speed of 100 
rpm, the vibration level recorded was 16.38 m/s², accompanied by a 
power output of 18.024 W. Finally, at a crack size of 100 mm with a 
rotational speed of 200 rpm, the vibration level peaked at 21.5 m/s², 
while the power output reached 33 W. These results illustrate the 
relationship between crack size, rotational speed, vibration levels and 
power output, highlighting the trends in performance as conditions 
change. 

From the calculations in this simulated scenario, the relationship 
between independent and dependent variables can be observed 
clearly: as crack size increased, and/or as rotational speed increased, 
the average vibration levels tended to rise, and the power output 
initially increased with higher rotational speeds but was negatively 
influenced by increasing crack sizes. Thus, while higher speeds can 
enhance power generation, larger defect sizes could lead to a 
reduction in the overall power output. This theoretical exploration 
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allowed for anticipating the operational behaviour of the WTS under 
configurations, beyond those specifically tested, aiding in 
optimisation and fault management strategies. 

4.8. Study’s Limitations: 
The use of wind speed data from Sohar, Oman, may restrict the 
generalisability of the results to other regions with different wind 
patterns. Additionally, the WTS may not fully capture the complexity of 
real-world turbine operations, which potentially affects the accuracy of 
vibration and power output measurements. The research focuses 
specifically on transverse blade defects and a limited range of 
parameters, such as crack size and shaft rotational speed. Other 
variables, such as wind turbulence and material fatigue, may be 
considered, which could influence the performance. 

5. Conclusions 
This research investigated the effects of input parameters such as 
crack size and rotational speed on the performance of a WTS system 
using vibration analysis, including regression analysis and the 
Taguchi design of experiments. The findings underscore the influence 
of blade defects on operational stability and power generation 
capabilities. 

The experimental data revealed that the presence of defects 
significantly altered the vibration profile of the WTS. Specifically, the 
average of negative peaks increased from -1.361 m/s² for a healthy 
blade at 50 rpm to -5.940 m/s² when the crack size increased to 33.4 
mm at 150 rpm. The average power output changed dramatically in 
tandem with these vibrations. This demonstrated increased 
fluctuations: the power output rose from 1.804 W (healthy blade at 
50 rpm) to 23.622 W (transversely defective blade at 150 rpm).  

Regression analysis yielded R² values of 99.999% for power output in 
the full quadratic model, the highest among all fitted models. This 
indicated an excellent fit and suggested that both crack size and 
rotational speed substantially contributed to the variance in 
performance metrics. 

The optimisation process was undertaken using GRA, indicating that 
the optimal settings for enhanced performance were achieved with a 
crack size of 33.4 mm and a rotational speed of 150 rpm. This resulted 
in the best GRG of 0.673. These conditions effectively balance the 
power output (23.622 W) while maintaining a manageable vibration 
level (11.697 m/s²). 

The sensitivity analysis demonstrated that both increasing crack size 
and rotational speed escalated vibration levels. At a crack size of 100 
mm combined with a rotational speed of 200 rpm, vibration levels 
surged to 21.5 m/s², while power output was only marginally 
affected. This suggested operational strain could lead to mechanical 
failure over time.  

This study lays a strong foundation for future research aimed at 
developing predictive maintenance strategies and improving the 
understanding of WTS under real-world conditions. Continuous 
monitoring and modelling of key parameters are essential for ensuring 
the reliability and efficiency of wind energy systems, reducing 
downtimes and optimising energy output in practical applications. 
Future research should focus on exploring advanced materials and 
design modifications to mitigate the adverse effects of cracks and 
enhance safe operation at higher speeds. Additionally, expanding on 
specific recommendations and addressing potential challenges in 
implementing these solutions will be critical for advancing the field. 
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