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ABSTRACT 
 

For a graph 𝐺 = (𝑉, 𝐸), a function 𝑓: 𝑉 → {0,1,2} is a perfect Roman dominating function (PRDF) on 𝐺 if every 𝑣 ∈ 𝑉 with 𝑓(𝑣) = 0 is adjacent to exactly one 
vertex 𝑢 with 𝑓(𝑢) = 2. The sum ∑ 𝑓!∈# (𝑣) is the weight 𝑤(𝑓) of 𝑓. The perfect Roman domination number 𝛾$

%(𝐺) of 𝐺 is least positive integer 𝑘 such that 
there is a PRDF 𝑓 on 𝐺 with 𝑤(𝑓) ≤ 𝑘. A function 𝑓: 𝑉 → {0,1,2} is a perfect Italian dominating function (PIDF) on 𝐺 if for every 𝑣 ∈ 𝑉 with 𝑓(𝑣) = 0, 
∑ 𝑓&∈'(!) (𝑢) = 2. The sum ∑ 𝑓!∈# (𝑣) is the weight 𝑤(𝑓). The perfect Italian domination number 𝛾*

%(𝐺) of 𝐺 is least positive integer 𝑘 such that there is a 
PIDF 𝑓 on 𝐺 with 𝑤(𝑓) ≤ 𝑘. Perfect Roman domination and perfect Italian domination are variants of Roman domination, which was originally introduced as 
a defensive strategy of the Roman Empire. In this article, we prove that the perfect Roman domination and perfect Italian domination problems for Cartesian 
product graphs are NP-complete. We also give an upper bound for 𝛾*

%(𝐺), where 𝐺 is the Cartesian product of paths and cycles. 
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1. Introduction and Preliminaries 
In this paper, we consider finite, simple and undirected graphs 𝐺 =
(𝑉, 𝐸), with vertex set 𝑉 and edge set 𝐸. We denote the number of 
vertices in a graph 𝐺 by |𝐺|. Two vertices, 𝑢 and 𝑣, in 𝐺 are adjacent 
or neighbours if 𝑢𝑣 ∈ 𝐸. The set of neighbours of a vertex 𝑣 in 𝐺 is 
denoted by 𝑁!(𝑣) or by 𝑁(𝑣) if 𝐺 is known from the context. The 
number of edges in a path is its length. We denote a path with 𝑘 
vertices by 𝑃" . A cycle graph with 𝑘 vertices is denoted by 𝐶" . 

Roman domination was first introduced by Cockayne et al., (2004) 
after a series of papers on strategies used to defend the ancient 
Roman Empire (ReVelle, 1997; Stewart, 1999; Revelle and Rosing, 
2000). The Roman domination notion was inspired by Emperor 
Constantine's (272–337 AD) defence plan to protect the Roman 
Empire. The approach was as follows: (i) any city in the empire could 
have no more than two legions stationed there, and (ii) every city 
without a legion had to be near a city with two armies. Therefore, if 
an attack were launched against a city without an army, a city with 
two armies could send one of its armies to defend the former. Roman 
domination and its variants have been the subject of more than 100 
academic articles. Even though the original strategy focused on army 
distribution, it can now be applied to any distribution problem, such 
as service centre distribution. Perfect Roman domination introduced 
in (Henning et al., 2018), Italian domination introduced as Roman 
{2} -domination in (Chellali et al., 2016) and perfect Italian 
domination introduced in (Haynes and Henning, 2019) are variants 
of Roman domination. In the current paper, we continue the study of 
perfect Roman and perfect Italian dominations. 

For a graph 𝐺 = (𝑉, 𝐸) , every function 𝑓: 𝑉 → 𝐴 , where 𝐴 ⊂ ℤ , 
corresponds to the partition >𝑉#

$?𝑉#
$ : = {𝑣 ∈ 𝑉?𝑓(𝑣) = 𝑖}, 𝑖 ∈ 𝐴A. 

The weight of 𝑓 is 𝑤(𝑓) := ∑ 𝑓%∈' (𝑣). If 𝐻 is a subgraph of 𝐺, then 
𝑤>𝑓(𝐻)A := ∑ 𝑓%∈'()) (𝑣). A Roman dominating function (RDF) 
is a function 𝑓: 𝑉 → {0,1,2} such that every 𝑣 ∈ 𝑉+

$  is adjacent to at 
least one vertex in 𝑉,

$ . The Roman domination number of 𝐺, denoted 
by 𝛾-(𝐺), is the minimum weight of an RDF 𝑓 on 𝐺. For recent work 
in Roman domination, we refer the reader to Luiz (2024). A function 
𝑓: 𝑉(𝐺) → {0,1,2} is a perfect RDF (PRDF) on 𝐺 if every 𝑣 ∈ 𝑉+

$  is 

adjacent to exactly one vertex 𝑢 ∈ 𝑉,
$ . The perfect Roman 

domination number of a graph 𝐺, denoted by 𝛾-
.(𝐺), is the minimum 

weight of a PRDF on 𝐺. It is clear that any PRDF on 𝐺 is also an RDF, 
so 𝛾-(𝐺) ≤ 𝛾-

.(𝐺)  for every graph 𝐺 . We refer the reader to 
(Henning and Klostermeyer, 2018; Darkooti et al., 2019 and Cabrera 
Martínez, 2022) for further work in perfect Roman domination.  

We now provide a simple example to illustrate the concept of perfect 
Roman domination: Let 𝑃/ ≔ 𝑣0𝑣,𝑣1𝑣2𝑣/  be a path with five 
vertices. Let 𝑓: 𝑉(𝑃/) → {0,1,2} be a function defined as 𝑓(𝑣0) =
0 , 𝑓(𝑣,) = 2 , 𝑓(𝑣1) = 2, 𝑓(𝑣2) = 0, 𝑓(𝑣/) = 1  is a PRDF, as 
every vertex with weight equal to 0 (namely, 𝑣0	and 𝑣2) is adjacent 
to a vertex with weight equal to 2. Observe that 𝑤(𝑓) = 5 but that 
𝛾-
.(𝐺) ≠ 5, as we can find another PRDF with a weight less than 5. 

Define a function 𝑔: 𝑉(𝑃/) → {0,1,2}  such that 𝑔(𝑣0) = 2 , 
𝑔(𝑣,) = 0 , 𝑔(𝑣1) = 0, 𝑔(𝑣2) = 2	and	𝑔(𝑣/) = 0 . Then, 𝑔  is a 
PRDF on 𝑃/ with 𝑤(𝑔) = 4. It is not difficult to check that there is no 
PRDF on 𝑃/ with a weight less than 4. So, 𝛾-

.(𝑃/) = 4. 

An Italian dominating function (IDF) on 𝐺  is a function 𝑓: 𝑉(𝐺) →
{0,1,2}  such that if 𝑣 ∈ 𝑉+

$ , ∑ 𝑓3∈4(%) (𝑢) ≥ 2 . The minimum 
weight of an IDF on 𝐺 is called the Italian domination number of 𝐺, 
denoted by 𝛾5(𝐺). Observe that every RDF on a graph 𝐺 is also an 
IDF, so 𝛾5(𝐺) ≤ 𝛾-(𝐺) ≤ 𝛾-

.(𝐺). Italian domination is also called 
Roman {2} -domination in the literature. We refer the reader to 
(Almulhim et al., 2024) for a recent survey paper on Roman {2}-
domination. 

A function 𝑓: 𝑉(𝐺) → {0,1,2}  is a perfect IDF (PIDF) on 𝐺  if for 
every 𝑣 ∈ 𝑉+

$ , ∑ 𝑓3∈4(%) (𝑢) = 2 . The perfect Italian domination 
number of 𝐺, denoted by 𝛾5

.(𝐺), is the minimum weight of a PIDF on 
𝐺 . Clearly, every PIDF on 𝐺  is also an IDF, so 𝛾5(𝐺) ≤ 𝛾5

.(𝐺). To 
read more about perfect Italian domination, we refer the reader to 
(Nazari-Moghaddam and Chellali, 2022; Banerjee et al., 2021; 
Pradhan et al., 2022). 

To illustrate the concept of perfect Italian domination, let 𝑓: 𝑉(𝑃/) →
{0,1,2}  be a function on 𝑃/  such that 𝑓(𝑣0) = 1 , 𝑓(𝑣,) = 0 , 
𝑓(𝑣1) = 1, 𝑓(𝑣2) = 0	and	𝑓(𝑣/) = 1 . Then, 𝑉+

$ = {𝑣,, 𝑣2} , 
∑ 𝑓3∈4(%!) (𝑢) = f(v0) + 𝑓(𝑣1) = 2  and ∑ 𝑓3∈4(%") (𝑢) =
f(v1) + 𝑓(𝑣/) = 2. So 𝑓 is a PIDF on 𝑃/  with 𝑤(𝑓) = 3. It is not 
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difficult to check that there is no PIDF on 𝑃/ with a weight less than 
3. So, 𝛾5

.(𝑃/) = 3. 

In general, none of the numbers 𝛾-(𝐺) and 𝛾5
.(𝐺) is bound for the 

other. Let 𝐺 = 𝐾6#,6!,⋯,6$  be the complete 𝑚-partite graph where 
𝑛# ≥ 3 for each 𝑖 ∈ [𝑚]. If 𝑚 ≥ 4, 𝛾5

.(𝐺) = 𝑛0 + 𝑛, +⋯+ 𝑛9  
(Lauri and Mitillos, 2020); while, 𝛾-(𝐺) ≤ 4,  as we can label one 
vertex from the first partite and one vertex from the second partite 
with 2 and label the rest of the vertices with 0. If 𝑚 = 3, 𝛾5

.(𝐺) = 3 
(Lauri and Mitillos, 2020), while 𝛾-(𝐺) = 4 (Cockayne et al., 2004). 
As 𝛾-(𝐺) ≤ 𝛾-

.(𝐺) , the latest example yields a graph 𝐺  with 
𝛾5
.(𝐺) ≤ 𝛾-

.(𝐺) . Generally, none of the numbers 𝛾-
.(𝐺)  and 

𝛾5
.(𝐺) is bound for the other. If 𝑚 ≥ 4,  𝛾-

.(𝐺) ≤ 𝑛: + 1,  where 
𝑛: = min#∈[9]{𝑛#},  as we can label one vertex in the 𝑛: -partite 
with 2, label the rest of vertices in the same partite with 1 and label 
the rest of vertices in 𝐺 with 0. So, 𝛾-

.(𝐺) ≤ 𝛾5
.(𝐺). 

 

This paper aims to increase the list of NP-complete problems. In 
mathematics, the NP-completeness theory is used to determine how 
difficult it is to find a polynomial time algorithm to solve a decision 
problem. More than 3,000 problems in graph theory and computer 
science have proven to be NP-complete problems when expressed as 
decision problems. This list is growing rapidly. All NP-complete 
problems are thought to have similar hardness. So, if one of those 
problems is solved in polynomial time, all other NP-complete 
problems can be solved in polynomial time. This observation hints at 
the usefulness of having a large list of NP-complete problems. 
 

Darkooti et al., (2019) proved that perfect Roman domination is an 
NP-complete problem for bipartite graphs. In the current paper, 
similar methods are used to prove that the perfect Roman domination 
problem is NP-complete for Cartesian product graphs.  

Lauri and Mitillos (2020) proved that perfect Italian domination is 
NP-complete even if 𝐺 is a bipartite planar graph. In this paper, we 
follow the technique they used and prove that perfect Italian 
domination is NP-complete even if 𝐺 is a Cartesian product graph.  

 

In the last section of this paper, we discuss perfect Italian domination 
of the Cartesian product graph of the paths 𝑃=  and 𝑃> , or of the path 
𝑃=  and the cycle 𝐶> , or of the cycles 𝐶=  and 𝐶> , where 𝑟, 𝑠 ≥ 6. We 
also give un upper bound for 𝛾5

.(𝐺), where 𝐺 is a Cartesian product 
of graphs. For perfect Roman domination of the Cartesian product of 
cycles and paths, we refer the readers to Almulhim et al., (2022). 

Let 𝐺0 and 𝐺, be two graphs. The Cartesian product graph of 𝐺0 and 
𝐺, , denoted by 𝐺0	⊠	𝐺, , is a graph with the Cartesian product 
𝑉(𝐺0) × 𝑉(𝐺,) as its set of vertices. Two vertices (𝑣, 𝑢), (𝑣′, 𝑢′) ∈
𝐺0	⊠	𝐺, are adjacent if either 
𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐺, or 
𝑢 = 𝑢′ and 𝑣𝑣′ ∈ 𝐺0. 

To prove our results, we must first introduce several graphs. Let 𝐻?,@
: = a𝑉>𝐻?,@A, 𝐸>𝐻?,@Ab , 𝑙 ≥ 1,  where 𝑉>𝐻?,@A
:= {𝑥, 𝑦, 𝑢0, ⋯ , 𝑢@ , 𝑣0, ⋯ , 𝑣@}  and 𝐸>𝐻?,@A := {𝑥𝑢# , 𝑦𝑢# , 𝑦𝑣# ∣
𝑖 ∈ [𝑙]} . The graph 𝐻?,1  is shown in Figure 1. Let 𝐻A
: = >𝑉(𝐻A), 𝐸(𝐻A)A,  where 𝑉(𝐻A) := {𝑐, 𝑐′, 𝑐″}  and 𝐸(𝐻A)
:= {𝑐𝑐′, 𝑐𝑐″} , so 𝐻A  is a path of length two. Let 𝑂A
: = >𝑉(𝑂A), 𝐸(𝑂A)A,  where 𝑉(𝑂A) := {𝑐, 𝑐′, 𝑐″, 𝑑′, 𝑑″}  and 𝐸(𝑂A)
:= {𝑐𝑐′, 𝑐𝑐″, 𝑐𝑑′, 𝑐𝑑″, 𝑐′𝑐″, 𝑑′𝑑″}. Let 𝐾, be a clique of size two with 
the vertex set {𝑤0, 𝑤,}. Let 𝐹?,@ : = 𝐻?,@	⊠	𝐾,, 𝐹A : = 𝐻A	⊠	𝐾, and 
𝑄A : = 𝑂A	⊠	𝐾,. 

Figure 1. The graph 𝐇𝐱,𝟑. 

 

2. The Complexity of Perfect Roman 
Domination of Cartesian Product 
Graphs 

In this section, we prove that the perfect Roman domination problem 
for Cartesian product graphs is NP-complete.  

To begin, we write the problem as a decision problem, that is, a 
problem for which the answer to its instances is either yes or no. So, 
instead of asking, ’Let 𝐺 be a graph. Find a PRDF on 𝐺 of minimum 
weight’, we let PERFECT ROMAN DOMINATION be the decision 
problem where a graph 𝐺 and an integer 𝑘 are given. The goal is to 
decide whether 𝐺 has a PRDF of weight at most 𝑘. 

 If a function 𝑓: 𝑉(𝐺) → {0,1,2}  is given, we can check in 
polynomial time (with respect to the number of vertices in the graph) 
whether the function is PRDF of weight less than or equal to 𝑘. We 
need to check only the weight of the neighbours of each vertex and 
whether the sum of all vertices’ weight is at most 𝑘. Thus, the problem 
is NP. We proceed by providing a polynomial-time reduction from the 
decision problem EXACT 3-COVER (X3C). (X3C). What we mean by a 
polynomial-time reduction is that if there is a polynomial algorithm 
to solve the PERFECT ROMAN DOMINATION problem, then there is 
a polynomial algorithm to solve the X3C problem. So, the PERFECT 
ROMAN DOMINATION problem is not more difficult than the X3C 
problem. 

In the X3C problem, a set 𝑋 with |𝑋| = 3𝑞 and a collection 𝐶 of 3-
element subsets of 𝑋  are given. The question is, does 𝐶  contain a 
subset 𝐶′ such that every element 𝑥 ∈ 𝑋 is in precisely one element 
of 𝐶′? If the answer is yes, we say (𝑋, 𝐶) has an exact cover. The X3C 
problem is known to be NP-complete (Johnson and Garey, 1979). 

Proposition 1. Let 𝑓 be a PRDF on 𝐺 containing 𝐹?,@  as a subgraph, 
with {(𝑥, 𝑤0), (𝑥, 𝑤,)}  as a vertex cut. If 𝑓(𝑥,𝑤0) = 2 , then 
𝑤a𝑓>𝐹?,@Ab ≥ 𝑙 + 2. 

Proof. Assume that 𝑓(𝑦,𝑤0) = 2.  Therefore, for all 𝑖 ∈ [𝑙] , the 
vertex (𝑢# , 𝑤0) is adjacent to two vertices labelled 2. So, we must 
have 𝑓(𝑢# , 𝑤0) ≥ 1 for all 𝑖 ∈ [𝑙]. This implies that 𝑤 a𝑓>𝐹?,@Ab ≥
𝑙 + 4. So, the statement holds. We may assume that 𝑓(𝑦,𝑤0) ≠ 2. If 
𝑓(𝑣# , 𝑤0) = 0 for some 𝑖 ∈ [𝑙], then we must have 𝑓(𝑣# , 𝑤,) = 2. 
So, for all 𝑖 ∈ [𝑙],  either 𝑓(𝑣# , 𝑤0) ≥ 1  or 𝑓(𝑣# , 𝑤,) ≥ 1 . This 
implies that 𝑤 a𝑓>𝐹?,@Ab ≥ 𝑙 + 2.	Thus, the statement holds. ∎ 
 Remark 1. Due to the symmetry between the vertices (𝑥, 𝑤0) and 
(𝑥, 𝑤,), the result of Proposition 1 holds if we write ‘𝑓(𝑥,𝑤,) = 2’ 
instead of ‘𝑓(𝑥,𝑤0) = 2’. 
Proposition 2. Let 𝑓 be a PRDF on a graph 𝐺 containing 𝐹?,@ , 𝑙 ≥ 3 
as a subgraph, with {(𝑥, 𝑤0), (𝑥, 𝑤,)} as a vertex cut. If 𝑓(𝑥,𝑤0) =
1, then 𝑤a𝑓>𝐹?,@Ab ≥ 5. 
Proof. We prove by discussing all possibilities of 𝑓(𝑥,𝑤,) . If 
𝑓(𝑥,𝑤,) = 2, the result follows by Proposition 1 and Remark 1. If 
𝑓(𝑥,𝑤,) = 1, then clearly 𝑤a𝑓>𝐹?,@Ab ≥ 6. If 𝑓(𝑥,𝑤,) = 0, it is 
clear that 𝑤a𝑓>𝐹?,@Ab ≥ 5. ∎ 
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Proposition 3. Let 𝑓 be a PRDF on a graph 𝐺 containing 𝐹?,@ , 𝑙 ≥ 3 
as a subgraph, with {(𝑥, 𝑤0), (𝑥, 𝑤,)} as a vertex cut.  

If 𝑓(𝑥,𝑤0) = 0 and 𝑓(𝑥,𝑤,) = 1, then 𝑤a𝑓>𝐹?,@Ab ≥ 5. 

If 𝑓(𝑥,𝑤0) = 0 and 𝑓(𝑥,𝑤,) = 0, then 𝑤a𝑓>𝐹?,@Ab ≥ 4. 

If 𝑤a𝑓>𝐹?,@Ab = 4, 𝑡ℎ𝑒n 𝑓(𝑦,𝑤0) = 𝑓(𝑦,𝑤,) = 2. 
The following proposition is not difficult to check. 

Proposition 4. Let 𝐺  be a graph containing 𝐹A  as a subgraph, with 
{(𝑐, 𝑤0), (𝑐, 𝑤,)}  as a vertex cut. If 𝑓  is a PRDF on 𝐺,  then 𝑓  has 
allocated labels of weight greater than or equal to 4 to 𝐹A . 
Theorem 1. PERFECT ROMAN DOMINATION is NP-complete for 
Cartesian product graphs. 
Proof. Let (𝑋, 𝐶)  be an instance of 𝑋3𝐶  such that 𝑋 =
{𝑥0, 𝑥,,⋯, 𝑥1B}  and 𝐶 = {𝐶0, 𝐶,, ⋯ , 𝐶C} . We describe a 
polynomial-time reduction from the X3C instance to a PERFECT 
ROMAN DOMINATION instance. 

Let 𝐻  be the graph with vertex set 𝑉(𝐻) = {𝑥0, 𝑥,,⋯, 𝑥1B} ∪
{𝑐0, 𝑐,, ⋯ , 𝑐C} such that 𝑥#𝑐D ∈ 𝐸(𝐻) if and only if 𝑥# ∈ 𝐶D . Let 𝑘 =
12𝑞 + 4𝑡. Let 𝑄 be the graph obtained from 𝐻 by identifying 𝑥#  for 
𝑖 ∈ [3𝑞] with 𝑥 in 𝐻?,"  (informally, for each 𝑖 ∈ [3𝑞], attach a copy 
of 𝐻?,"  to 𝑥# ) and attaching to 𝑐#  for 𝑖 ∈ [𝑡] two pendants 𝑐′# , 𝑐″#  
(i.e. 𝑐#  is identified with 𝑐 in 𝐻A). We denote the vertex 𝑦 in the graph 
𝐻?,"  that corresponds to 𝑥#  by 𝑦# . Let 𝐺 be the Cartesian product of 
𝑄 and 𝐾,  (with {𝑤0, 𝑤,} as the vertex set of 𝐾,). We prove (𝑋, 𝐶) 
has an exact cover if and only if 𝐺 has a PRDF 𝑓 with 𝑤(𝑓) ≤ 𝑘. 

Let 𝐶′  be an exact cover of (𝑋, 𝐶) . Define a function 𝑓: 𝑉(𝐺) →
{0,1,2} as follows: set 𝑓(𝑦# , 𝑤0) = 𝑓(𝑦# , 𝑤,) = 2 for all 𝑖 ∈ [3𝑞]; 
set 𝑓(𝑐# , 𝑤0) = 𝑓(𝑐# , 𝑤,) = 2  if 𝐶# ∈ 𝐶′ ; set 𝑓(𝑐′# , 𝑤0) =
𝑓(𝑐″# , 𝑤,) = 2  if 𝐶# ∈ 𝐶 ∖ 𝐶′ ; and all the remaining vertices are 
labelled 0. As |𝑋| = 3𝑞  and |𝐶| = 𝑡, then 𝑤(𝑓) = 4(3𝑞) + 4𝑡 =
12𝑞 + 4𝑡 = 𝑘. Since 𝐶′ is an exact cover, every 𝑥#  is in exactly one  
3 -element subset 𝐶D ∈ 𝐶′ , so (𝑥# , 𝑤0)  is adjacent to exactly one 
vertex, namely >𝑐D , 𝑤0A, labelled 2. Similarly, (𝑥# , 𝑤,) is adjacent to 
exactly one vertex, namely >𝑐D , 𝑤,A, labelled 2. It is not hard to see 
that any other vertex labelled 0  is adjacent to exactly one vertex 
labelled 2. Thus, 𝑓 is a PRDF. 

Conversely, assume that there exists a PRDF 𝑓  on 𝐺  such that 
𝑤(𝑓) ≤ 𝑘. Note that 𝐺 contains 3𝑞 copies of 𝐹?," . Observe also that 
for any 𝑖 ∈ [3𝑞] , 𝐸>𝐹?(," − {(𝑥# , 𝑤0), (𝑥# , 𝑤,)}, 𝐺 − 𝐹?(,"A = 𝜙 ; 
informally, if 𝐹?(,"  is connected to 𝐺 − 𝐹?(," , it is connected only 
through the vertices (𝑥# , 𝑤0) and (𝑥# , 𝑤,). From Propositions 1, 2 
and 3, 𝑓 has allocated labels of weight greater than or equal to 12𝑞 
to ∪#∈[1B] 𝑉>𝐹?(,"A . Note that 𝐺  contains 𝑡  copies of 𝐹A . By 
Proposition 4, the function 𝑓 has allocated labels of weight greater 
than or equal to 4𝑡 to ∪#∈[C] 𝑉>𝐹A(A. Therefore, 𝑓 allocates labels of 
weight exactly 12𝑞  to ∪#∈[1B] 𝑉>𝐹?(,"A  and exactly 4𝑡  to 
∪#∈[C] 𝑉>𝐹A(A . By Proposition 3, we must have 𝑓(𝑥# , 𝑤0) =
𝑓(𝑥# , 𝑤,) = 0  and 𝑓(𝑦# , 𝑤0) = 𝑓(𝑦# , 𝑤,) = 2  for all 𝑖 ∈ [3𝑞] . 
This also means that all neighbours of (𝑥# , 𝑤0) in 𝐹?(,"  are labelled 0. 
Since 𝑓 is a PRDF, (𝑥# , 𝑤0) is adjacent to exactly one neighbour of 
the form >𝑐D , 𝑤0A  such that 𝑓>𝑐D , 𝑤0A = 2 . Thus 𝐶′ = {𝐶D ∣
𝑓>𝑐D , 𝑤0A = 2} is an exact cover of (𝑋, 𝐶). ∎ 

3. The Complexity of Perfect Italian 
Domination of Cartesian Product 
Graphs 

In this section, we prove that the perfect Italian domination problem 
of Cartesian product graphs is NP-complete. 

Let the PERFECT ITALIAN DOMINATION be the decision problem 
where a graph 𝐺 and an integer 𝑘 are given and the goal is to decide 
whether 𝐺 has a PIDF of weight at most 𝑘. 

If a function 𝑓: 𝑉(𝐺) → {0,1,2} is given, we can check in polynomial 
time whether the function is a PIDF with 𝑤(𝑓) ≤ 𝑘 . Thus, the 
problem is in NP class. To proceed, a polynomial-time reduction from 
X3C will be given. We need some propositions before describing the 
reduction. 

Proposition 5. Let 𝑓  be a PIDF on a graph 𝐺  containing 𝐹?,@  as 
subgraph, with {(𝑥, 𝑤0), (𝑥, 𝑤,)} as a vertex cut. If 𝑓(x,w0) ≠ 0, 
then 𝑤a𝑓>𝐹?,@Ab > 𝑙. 
Proof. Assume that 𝑓(𝑥,𝑤0) = 2. If 𝑓(𝑢# , 𝑤0) > 0  for all 𝑖 ∈ [𝑙] , 
then 𝑤 a𝑓>𝐹?,@Ab ≥ 𝑙 + 2,  and we are done. So, assume 
𝑓(𝑢# , 𝑤0) = 0 for some 𝑖 ∈ [𝑙]. Then, 𝑓(𝑦,𝑤0) = 0. Let 𝑄 := {𝑖 ∣
𝑓(𝑣# , 𝑤0) = 0}. Then, 𝑓(𝑣# , 𝑤,) = 2 for all 𝑖 ∈ 𝑄. Thus, for every 
𝑖 ∈ [𝑙] , either 𝑓(𝑣# , 𝑤0) ≥ 1  or 𝑓(𝑣# , 𝑤,) ≥ 1 . Then, 
𝑤a𝑓>𝐹?,@Ab ≥ 𝑙 + 2, and we are done. 

Assume 𝑓(𝑥,𝑤0) = 1. If 𝑓(𝑦,𝑤0) = 2, then 𝑓(𝑢# , 𝑤0) > 0 for all 
𝑖 ∈ [𝑙]; so, 𝑤 a𝑓>𝐹?,@Ab ≥ 𝑙 + 3, and we are done. If 𝑓(𝑦,𝑤0) = 1, 
then for every 𝑖 ∈ [𝑙],  either 𝑓(𝑣# , 𝑤0) ≥ 1  or 𝑓(𝑣# , 𝑤,) ≥ 1 . So, 
𝑤a𝑓>𝐹?,@Ab ≥ 𝑙 + 2, and we are done. If 𝑓(𝑦,𝑤0) = 0,  then for 
every 𝑖 ∈ [𝑙],  either 𝑓(𝑢# , 𝑤0) > 0  or 𝑓(𝑢# , 𝑤,) > 0 . So, 
𝑤a𝑓>𝐹?,@Ab ≥ 𝑙 +1, and we are done. ∎ 

Remark 2. Due to the symmetry between (𝑥, 𝑤0) and (𝑥, 𝑤,), the 
result of Proposition 5 holds if we write ‘𝑓(𝑥,𝑤,) ≠ 0’ instead of 
‘𝑓(𝑥,𝑤0) ≠ 0’. 
Let 𝑢 ∈ 𝐺  and 𝑓 be a PIDF on 𝐺. We say that 𝑢 is satisfied if either 
𝑓(𝑢) ≠ 0  or ∑ 𝑓%∈4(3) (𝑣) = 2 . Let 𝑢 ∈ 𝐻 ⊆ 𝐺  with 𝑓(𝑢) = 0 . 
We say that 𝑢  is in-satisfied with respect to 𝐻  if 𝑢  is satisfied and 
∑ 𝑓%∈4(3)∩) (𝑣) = 2; we say that 𝑢 is out-satisfied with respect to 
𝐻 if 𝑢 is satisfied and ∑ 𝑓%∈4(3)∖) (𝑣) = 2. 

Proposition 6. Let 𝐺 be a graph containing 𝐹?,@ , 𝑙 ≥ 3 as a subgraph, 
with {(𝑥, 𝑤0), (𝑥, 𝑤,)}  as a vertex cut. Let 𝑓  be a PIDF on 𝐺 . If 
𝑓(𝑥,𝑤0) = 0 and 𝑓(𝑥,𝑤,) = 0, 𝑓 has allocated labels of weight at 
least 4 to 𝐹?,@ , with equality if and only if 𝑓(𝑦,𝑤0) = 𝑓(𝑦,𝑤,) = 2. 
Proposition 7. Let 𝐺  be a graph containing 𝑄A  as a subgraph, with 
{(𝑐, 𝑤0), (𝑐, 𝑤,)}  as a vertex cut. Let 𝑓  be a PIDF on 𝐺 . Then, 
𝑤>𝑓(𝑄A)A ≥ 4. In addition, if 𝑤>𝑓(𝑄A)A = 4,  then either 
𝑓(𝑐, 𝑤0) = 𝑓(𝑐, 𝑤,) = 0 or 𝑓(𝑐, 𝑤0) = 𝑓(𝑐,𝑤,) = 2. 
Proof. If each vertex in the set {(𝑐′, 𝑤0), (𝑐″, 𝑤0), (𝑐′, 𝑤,), (𝑐″, 𝑤,)} 
is labelled 1  or 2 , then 𝑤>𝑓(𝑄A)A ≥ 4, 𝑎𝑛𝑑  we are done. So, 
assume without losing generality that 𝑓(𝑐′, 𝑤0) = 0 . Since 
𝑁>(𝑐′, 𝑤0)A = {(𝑐, 𝑤0), (𝑐″, 𝑤0), (𝑐′, 𝑤,)}, the weight assigned to 
those vertices combined is 2. Note that no vertex in 𝑁>(𝑐′, 𝑤0)A is 
adjacent to a vertex in {(𝑑′, 𝑤,), (𝑑″, 𝑤,)}.  If each vertex in 
{(𝑑′, 𝑤,), (𝑑″, 𝑤,)} is labelled 1 or 2, we are done. Without losing 
generality, suppose 𝑓(𝑑′, 𝑤,) = 0 . Since 𝑁>(𝑑′, 𝑤,)A =
{(𝑐, 𝑤,), (𝑑″, 𝑤,), (𝑑′, 𝑤0)}, the weight assigned to those vertices 
combined is 2. Thus, the first claim is true. The second claim is not 
difficult to check. ∎ 

Theorem 2. PERFECT ITALIAN DOMINATION is NP-complete for 
Cartesian product graphs. 
Proof. Let (𝑋, 𝐶)  be an instance of 𝑋3𝐶  such that 𝑋 =
{𝑥0, 𝑥,,⋯, 𝑥1B}  and 𝐶 = {𝐶0, 𝐶,, ⋯ , 𝐶C}  is a collection of 3 -
element subsets of 𝑋. We describe a polynomial-time reduction to 
PERFECT ITALIAN DOMINATION. 

Let 𝐻  be the graph with vertex set 𝑉(𝐻) = ~𝑥0, 𝑥,,⋯, 𝑥1B� ∪
{𝑐0, 𝑐,, ⋯ , 𝑐C},  where 𝑥#𝑐D ∈ 𝐸(𝐻) if and only if 𝑥# ∈ 𝐶D . Let 𝑘 =
12𝑞 + 4𝑡. Let 𝑄 be the graph acquired from 𝐻 by identifying 𝑥#  for 
𝑖 ∈ [3𝑞] with 𝑥 in 𝐻?,"  (informally, for each 𝑖 ∈ [3𝑞], attach a copy 
of 𝐻?,"  to 𝑥#) and identifying 𝑐#  with 𝑐 in 𝑂A  (informally, for each 𝑖 ∈
[𝑡] , attach a copy of 𝑂A  to 𝑐#). Let 𝐺 := 𝑄	⊠	𝐾,,	that is, 𝐺  is the 
Cartesian product of 𝑄  and 𝐾, . We prove that (𝑋, 𝐶) has an exact 
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cover if and only if 𝐺 admits a PIDF 𝑓 such that 𝑤(𝑓) ≤ 𝑘. 
Assume that (𝑋, 𝐶)  has an exact cover 𝐶′ . Define a function 
𝑓: 𝑉(𝐺) → {0,1,2}  as follows: set 𝑓(𝑦# , 𝑤0) = 𝑓(𝑦# , 𝑤,) = 2  for 
all 𝑖 ∈ [𝑘] . If 𝐶# ∈ 𝐶′,  set 𝑓(𝑐# , 𝑤0) = 𝑓(𝑐# , 𝑤,) = 2 . If 𝐶# ∈ 𝐶 ∖
𝐶′ , set 𝑓(𝑐′# , 𝑤0) = 𝑓(𝑑′# , 𝑤0) = 𝑓(𝑐″# , 𝑤,) = 𝑓(𝑑″# , 𝑤,) = 1 . 
Label the remaining vertices with 0. See Figure 2. Since 𝐶′ is an exact 
cover, every 𝑥# ∈ 𝑋 is in exactly one element of 𝐶′. So, (𝑥# , 𝑤0) and 
(𝑥# , 𝑤,) are satisfied, and it is simple to check that the rest of vertices 
of 𝐺 are satisfied. Thus, 𝑓 is a PIDF with 𝑤(𝑓) = 4(3𝑞) + 4𝑡 = 𝑘. 

Conversely, assume that there exists a PIDF 𝑓  on 𝐺  such that 
𝑤(𝑓) ≤ 𝑘 . By Proposition 5 and Remark 2, 𝑓(𝑥# , 𝑤0) =
𝑓(𝑥# , 𝑤,) = 0  for every 𝑖 ∈ [3𝑞] ; otherwise, we would have 
𝑤(𝑓) > 𝑘 . By Proposition 6, 𝑤 a𝑓>𝐹?,"Ab ≥ 4.	Observe that 𝐺 
contains 3𝑞 copies of 𝐹?," . By Proposition 7, 𝑤>𝑓(QG)A ≥ 4.	Note 
that 𝐺  contains 𝑡  copies of 𝑄A . Since 𝑤(𝑓) ≤ 𝑘 , we must have 
𝑤a𝑓>𝐹?,"Ab = 4	for all the 3𝑞 copies of 𝐹?," , and 𝑤>𝑓(QG)A = 4 
for all the 𝑡 copies of QG. By Proposition 7, for every 𝑖 ∈ [𝑡], either 
𝑓(𝑐# , 𝑤0) = 𝑓(𝑐# , 𝑤,) = 0  or 𝑓(𝑐# , 𝑤0) = 𝑓(𝑐# , 𝑤,) = 2 . 
Construct the subset 𝐶′ ⊆ 𝐶  as follows: let 𝐶# ∈ 𝐶′  if and only if 
𝑓(𝑐# , 𝑤0) = 2. By Proposition 6, for every 𝑖 ∈ [3𝑞], (𝑥# , 𝑤0) is out-
satisfied with respect to 𝐹?(," . So, for every 𝑖 ∈ [3𝑞] , (𝑥# , 𝑤0)  is 
adjacent to exactly one >𝑐D , 𝑤0A  with 𝑓>𝑐D , 𝑤0A = 2.  Thus, every 
𝑥# ∈ 𝑋 is in exactly one element in 𝐶′. Thus, 𝐶′ is an exact cover. ∎ 

Figure 2. The restriction of 𝒇 on 𝑸𝒄𝒊 . 

 

4. Bounds on 𝜸𝑰𝒑(𝑮) of the Cartesian 
Product of Graphs 

In this section, we show that if 𝐺 ∈ {𝑃=	⊠	𝑃>, 𝐶=	⊠	𝐶>},  where 
𝑟, 𝑠 ≥ 6, 𝛾5

.(𝐺) ≤ 0
,
|𝐺| + 0

,
min{𝑟, 𝑠}, and if 𝐺 = 𝑃=	⊠	𝐶> , where 

𝑟 ≥ 6 , 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟 . We also give an upper bound for 

𝛾5
.(𝐺), where 𝐺 is the Cartesian product of graphs. Then, we end this 

section with an open problem. 

The graph 𝑃=	⊠	𝑃>  is a grid graph, 𝑃=	⊠	𝐶>  is a cylinder grid graph, 
and 𝐶=	⊠	𝐶>  is a torus grid graph with 𝑟  rows and 𝑠  columns. We 
denote the vertex in row 𝑖 and column 𝑗 by 𝑎#,D ; see Figure 3. 

Figure 3. Cartesian products of paths and cycles. 

 
 

Let 𝐺 ∈ {𝑃=	⊠	𝑃>, 𝑃=	⊠	𝐶>, 𝐶=	⊠	𝐶>}. Let 𝑓: 𝑉(𝐺) → {0,1,2} be a 
function defined by 

𝑓>𝑎#,DA = �
1, if	𝑗	even,
1, if	𝑗 ∈ {1, 𝑠}	and	𝑖 ≡ 1 mod	3,
0, otherwise.

 

To begin, assume that 𝐺 = 𝑃=	⊠	𝑃>. We could presume that 𝑟 ≤ 𝑠. 

Lemma 1. If 𝑟 ≡ 0 mod	3, 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟. 

Proof. Define a function 𝑓′: 𝑉(𝐺) → {0,1,2} by 

𝑓′>𝑎#,DA = �
1, if	𝑗 ∈ {1, 𝑠}	and	𝑖 = 𝑟 − 1,
𝑓>𝑎#,DA, otherwise.  

See Figure 4; we use red to highlight the vertices 𝑎#,D  for which 
𝑓′>𝑎#,DA ≠ 𝑓>𝑎#,DA. 
Clearly, 𝑓′ is a PIDF on 𝐺. If 𝑠 is odd, 

𝑤(𝑓′) =
𝑟(𝑠 − 3)

2 + 𝑟 +
2𝑟
3 + 2

=
𝑟𝑠
2 +

𝑟
6 + 2

≤
(0)

|𝐺|
2
+
𝑟
2
.

 

Inequality (1) holds as 𝑟 ≥ 6. If 𝑠 is even, 

𝑤(𝑓′) =
𝑟(𝑠 − 2)

2 + 𝑟 +
𝑟
3 + 1

=
𝑟𝑠
2 +

𝑟
3 + 1

≤
(,)

|𝐺|
2
+
𝑟
2
.

 

Inequality (2) holds as 𝑟 ≥ 6. Thus, the statement holds. ∎ 

Figure 4. The function 𝒇′ when 𝒓 ≡ 𝟎	𝒎𝒐𝒅	𝟑. 

 
Lemma 2. If 𝑟 ≡ 1 mod	3, 𝛾5

.(𝐺) ≤ 0
,
|𝐺| + 0

,
𝑟. 

Proof. It is not difficult to see that 𝑓 is a PIDF on 𝐺. 

If 𝑠 is odd, 

𝑤(𝑓) =
𝑟
2
(𝑠 − 3) + 𝑟 +

2(𝑟 − 1)
3 + 2

=
𝑟𝑠
2 +

𝑟
6 +

4
3

<
𝑟𝑠
2 +

𝑟
2

=
|𝐺|
2 +

𝑟
2 .

 

If 𝑠 is even, 

𝑤(𝑓) =
𝑟(𝑠 − 2)

2 + 𝑟 +
𝑟 − 1
3 + 1

=
𝑟𝑠
2 +

𝑟
3 +

2
3

<
𝑟𝑠
2 +

𝑟
2 .

 

Thus, the statement holds. ∎ 
 

Remark 3. Observe that if 𝐺 ∈ {𝑃=	⊠	𝐶>, 𝐶=	⊠	𝐶>}, 𝑟 ≡ 1 mod	3 
and 𝑠 is odd, then 𝑓 is a PIDF on 𝐺. From the above proof, 𝛾5

.(𝐺) <
|!|
,
+ =

,
. 

Lemma 3. If 𝑟 ≡ 2 mod	3, 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟. 

Proof. Checking that 𝑓 is a PIDF on 𝐺 is simple, see Figure 5. 
If 𝑠 is odd, 
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𝑤(𝑓) =
𝑟(𝑠 − 3)

2 + 𝑟 +
2(𝑟 − 2)

3 + 2

=
𝑟𝑠
2 +

𝑟
6 +

2
3

<
𝑟𝑠
2 +

𝑟
2 .

 

If 𝑠 is even, 

𝑤(𝑓) =
𝑟(𝑠 − 2)

2 + 𝑟 +
𝑟 − 2
3 + 1

=
𝑟𝑠
2 +

𝑟
3 +

1
3

<
𝑟𝑠
2 +

𝑟
2 .

 

So, the statements hold. ∎ 

Figure 5. The function 𝒇 when 𝒓 ≡ 𝟐	𝒎𝒐𝒅	𝟑. 

 
 

Remark 4. If 𝐺 = 𝑃=	⊠	𝐶> , 𝑟 ≡ 2 mod	3 and 𝑠 is odd, then 𝑓 is a 
PIDF on 𝐺. So, 𝛾5

.(𝐺) < |!|
,
+ =

,
. 

Theorem 3. If 𝐺 = 𝑃=	⊠	𝑃>,  where 𝑟, 𝑠 ≥ 6 , 𝛾5
.(𝐺) ≤ 0

,
|𝐺| +

0
,
min{𝑟, 𝑠}. 

Proof. Follows by Lemmas 1, 2 and 3. ∎ 
Now, assume 𝐺 ∈ {𝑃=	⊠	𝐶>, 𝐶=	⊠	𝐶>}. 
Lemma 4. If 𝑠 is even, 𝛾5

.(𝐺) ≤ 0
,
|𝐺|. 

Proof. Let 𝑔: 𝑉(𝐺) → {0,1,2} be a function defined by 

	𝑔	>𝑎#,DA = �
1, if	𝑗	is	even,
0, if	𝑗	is	odd.  

The function 𝑔 is a PIDF on 𝐺 with weight equal to 0
,
|𝐺|. ∎ 

Lemma 5. If 𝑠 is odd and 𝑟 ≡ 0 mod	3, 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟. 

Proof. If 𝐺 = 𝑃=	⊠	𝐶>, we slightly modify the function 𝑓 by labelling 
𝑎#,D  with 1 if 𝑗 ∈ {1, 𝑠} and 𝑖 = 𝑟 − 1, keeping the rest of the labels 
without any change. This is the labelling used in Lemma 1 (the 
function 𝑓′), and we showed that the sum of all labellings is at most 
0
,
|𝐺| + 0

,
𝑟. 

If 𝐺 = 𝐶=	⊠	𝐶>, then 𝑓  is PIDF on 𝐺 , and 𝑤(𝑓) < 𝑤(𝑓′). So, the 
statement holds. ∎ 

Lemma 6. If 𝑠 is odd and 𝑟 ≡ 2 mod	3, 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟. 

Proof. For 𝐺 = 𝑃=	⊠	𝐶> , see Remark 4. For 𝐺 = 𝐶=	⊠ 𝐶> , define a 
function 𝑓′: 𝑉(𝐺) → {0,1,2} by 

𝑓′>𝑎#,DA = �
1, if	𝑗 ∈ {1, 𝑠}	and	𝑖 = 𝑟,
𝑓>𝑎#,DA, otherwise.  

Checking that 𝑓′ is a PIDF is simple, in addition, 

𝑤(𝑓′) =
𝑟(𝑠 − 3)

2 + 𝑟 +
2(𝑟 − 2)

3 + 4

=
𝑟𝑠
2 +

𝑟
6 +

8
3

≤
𝑟𝑠
2 +

𝑟
2 .

 

The last inequality follows from the fact that 𝑟 ≡ 2 mod	3 and 𝑟 ≥
6. ∎ 

Theorem 4. Let 𝑟, 𝑠 ≥ 6. If 𝐺 = 𝑃=	⊠	𝐶> , 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
𝑟. If 

𝐺 = 𝐶=	⊠	𝐶> , 𝛾5
.(𝐺) ≤ 0

,
|𝐺| + 0

,
min{𝑟, 𝑠}. 

Proof. Follows by Lemmas 4–6, Remarks 3 and 4, and the symmetry 
between 𝑠 and 𝑟 when G = CK ⊠ CL. ∎ 

Looking at Theorems 3 and 4 and knowing that 𝛾5
.(𝐻) ≤ 0

,
|𝐻| + 1 

if 𝐻 is a path or a cycle, it is natural to ask whether we can always 
drive an upper bound for 𝛾5

.(𝐺0⊠	𝐺,)  in terms of 𝛾5
.(𝐺0)  or 

𝛾5
.(𝐺,). The following theorem answers this question. 

Theorem 5. Let 𝐺0  and 𝐺,  be graphs and 𝐺 = 𝐺0⊠	𝐺, . Assume 
𝛾5
.(𝐺0) = 𝑚0  and 𝛾5

.(𝐺,) = 𝑚, . Then, 𝛾5
.(𝐺) ≤

min{𝑚0|𝐺,|,𝑚,|𝐺0|}. 
Proof. We can assume that min{𝑚0|𝐺,|,𝑚,|𝐺0|} = 𝑚0|𝐺,|. Let 𝑔 
be a PIDF witnessing that 𝛾5

.(𝐺0) = 𝑚0. Define a function ℎ on 𝐺 as 
follows: for every (𝑣, 𝑢) ∈ 𝐺0⊠	𝐺,, set ℎ(𝑣, 𝑢) = 𝑔(𝑣). Let (𝑣, 𝑢) 
be any vertex in 𝐺. If ℎ(𝑣, 𝑢) ≠ 0, it is done. So, assume ℎ(𝑣, 𝑢) =
0 . Let 𝐴 := {(𝑣, 𝑢′) ∣ 𝑢𝑢′ ∈ 𝐸(𝐺,)}  and 𝐵 := {(𝑣′, 𝑢) ∣ 𝑣𝑣′ ∈
𝐸(𝐺0)}; then, 𝑁(𝑣, 𝑢) = 𝐴 ∪ 𝐵 . Every vertex in 𝐴 is labelled 0 as 
ℎ(𝑣, 𝑢′) = 𝑔(𝑣) = ℎ(𝑣, 𝑢) = 0 . Since 𝑔  is a PIDF on 𝐺0, 
∑ ℎ(%M,3)∈N (𝑣′, 𝑢) = ∑ 𝑔%M∈4*#(%)

(𝑣′) = 2. Thus, ℎ  is PIDF on 𝐺 
and 𝑤(ℎ) ≤ 𝑚0|𝐺,|. ∎ 

Haynes and Henning (2019) showed that if 𝑇 is a tree with |𝑇| ≥ 3, 
then 𝛾5

.(𝑇) ≤ 2
/
|𝑇|. The following is a direct result of the previous 

theorem. 

Corollary 1. If 𝑇0  and 𝑇,  are trees with |𝑇0|, |𝑇,| ≥ 3,  then 
𝛾5
.(𝑇0⊠	𝑇,) ≤

2
/
|𝑇0⊠	𝑇,|. 

Haynes and Henning (2019) proved that their result is tight. They 
showed that if 𝑛 is a multiple of 5, there exists a tree 𝑇 with |𝑇| = 𝑛 
such that 𝛾5

.(𝑇) = 2
/
𝑛 . For example, let 𝑇′  be the graph obtained 

from the star graph 𝑆2 by adding an extra vertex adjacent to one of 
the leaves; then, |𝑇′| = 5  and 𝛾5

.(𝑇′) = 2
/
|𝑇′| . However, 

𝛾5
.(𝑇′	⊠	𝑇′) ≤ 17 . We end this paper with the following open 

question. 
Question. Is the bound in Corollary 1 tight? 

5. Conclusions 
In this paper, we proved that the perfect Roman domination and perfect 
Italian domination problems of the Cartesian product graphs are NP-
complete. We also provided an upper bound for the perfect Italian 
domination number for the Cartesian product of a path and a path, a 
path and a cycle, a cycle and a cycle, and a tree and a tree. For future 
work, we suggest studying the complexity of the perfect Roman 
domination and perfect Italian domination of the Cartesian product of 
specific types of graphs. We also suggest finding the tight upper bound 
of the perfect Italian domination number of the Cartesian product of 
paths and cycles and investigating the perfect Roman and perfect Italian 
domination numbers of the Cartesian product of other types of graphs. 
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