
 7 

 
  

  

 
 

Scientific Journal of King Faisal University: 
Basic and Applied Sciences 

 
 
 

 

 

 

 00966135895800, kalbarrak@kfu.edu.sa Corresponding Author: Khalied M. Albarrak 
 

Enhancing Interoperability in the Web of Things: A Reference Architecture Approach 
Khalied M. Albarrak 
Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa, Saudi Arabia 

ASSIGNED TO AN ISSUE 
01/06/2025 

PUBLISHED ONLINE 
18/12/2024 

ACCEPTED 
18/12/2024 

RECEIVED 
02/08/2024 

LINK 
https://doi.org/10.37575/b/sci/240034 

 

 
 

ISSUE 
1 

VOLUME 
26 

YEAR 
2025 

NO. OF PAGES 
6 

NO. OF WORDS 
5327 

 

ABSTRACT 
 

The concept of the Internet of Things (IoT) has fundamentally redefined the connectivity landscape by integrating physical devices with the Internet for data 
exchange. The Web of Things (WoT) takes this integration a step further by embedding IoT devices within the web, thus facilitating their interoperability. 
However, the inherent complexity of WoT architecture requires a layer of abstraction to simplify development and integration. Patterns and reference 
architectures (RAs) provide such an abstraction, modeling solutions for recurrent problems within this domain. In this paper, we aim to develop an RA for the 
WoT ecosystem. We use architectural patterns to build the RA of the WoT. Here, we present the WoT gateway pattern, which provides a clear and adaptable 
framework for integrating diverse IoT devices, ensuring seamless communication and functionality within the broader web ecosystem. The purpose of this pattern 
is twofold: to ensure the interoperability of WoT implementations and to serve as a foundational guide for developers navigating the multifaceted challenges of 
WoT system design. The pattern also paves the way for building an RA for IoT environments. 

KEYWORDS 
Architectural patterns, Internet of Things, reference architecture, web development, web science, WoT 

CITATION 
Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 

26(1), 7–12. DOI: 10.37575/b/sci/240034 
 

1. Introduction 
The Internet of Things (IoT) has revolutionized how we interact with 
the physical world through interconnected devices and systems. It 
encompasses a wide array of technologies that enable devices to 
collect, exchange, and act on data, often with minimal human 
intervention. However, as the IoT landscape expands, it has also 
become a complex web of proprietary systems with significant 
interoperability challenges. To address these issues, the Web of 
Things (WoT) has emerged as a unifying layer designed to enable 
interoperability across various IoT platforms and domains by 
leveraging web technologies. 

The WoT seeks to create a cohesive ecosystem where IoT devices can 
communicate seamlessly, regardless of the diverse protocols and 
standards they may employ. Its integration into IoT architecture 
introduces a new level of standardization and interaction, allowing 
devices to effectively communicate, share, and act upon data. This 
approach is expected to mitigate existing IoT challenges, such as 
siloed ecosystems (Nedeltcheva and Shoikova, 2017) and lack of 
uniformity (Achirei et al., 2020), by providing a common ground that 
fosters innovation and simplifies the development of IoT solutions. 
The application of WoT is particularly significant in ensuring that as 
the number of IoT devices grows, they can operate in harmony, 
creating more intelligent and responsive environments. 

This paper introduces a pattern for WoT architecture as a 
foundational step toward building a reference architecture (RA) for 
the WoT ecosystem. The intended audience includes system 
architects and system designers. Patterns have been instrumental in 
modeling various virtualized environments (Alnaim et al., 2019; 
Alwakeel et al., 2019a; Syed and Fernandez, 2018), offering solutions 
to recurring design and architectural challenges. They address 
common problems such as flexibility (Alnaim et al., 2019), 
heterogeneity (Fernandez and Hamid, 2015), and elasticity (Syed et 
al., 2016). Furthermore, RAs have proven effective as tools for 
abstracting complex systems that often lack clear semantics. 

Implementing an RA for WoT aids in understanding the system's 
functionality and identifying potential vulnerabilities. Over time, this 

RA could evolve into a security reference architecture (SRA) by 
incorporating misuse and security patterns addressing potential 
threats and vulnerabilities within the system. Despite this potential, a 
noticeable gap exists in the application of patterns to WoT. While IoT 
architectures provide general frameworks, WoT's unique challenges 
require more precise modeling. 

The primary contribution of this paper is the development of a 
comprehensive RA for the WoT. This RA simplifies the integration and 
management of IoT devices across different platforms and protocols 
while enhancing interoperability and scalability. The WoT 
architecture defines an abstract architecture based on modular 
building blocks applicable across diverse application domains. This 
abstract architecture, as described by the World Wide Web 
Consortium (W3C), is not prescriptive but descriptive, emphasizing 
interoperability and complementing existing IoT standards rather 
than replacing them (Lagally et al., 2023). 

The remainder of the paper is structured as follows: Section 2 
provides the background of WoT architecture, patterns, and RA. 
Section 3 presents a pattern for WoT. The paper concludes with 
insights and directions for future research. 

2. Background 
2.1. Web of Things 
WoT architecture, developed by the W3C, is a conceptual framework 
designed to foster interoperability among disparate IoT devices and 
platforms (Lagally et al., 2023). At its core, WoT aims to integrate IoT 
with the World Wide Web, establishing a uniform way to 
communicate across various protocols and data formats. The 
architecture leverages web standards to create a common interface, 
with the goal of making IoT devices as accessible and interactive as 
web pages and services. This approach enables developers to build 
cross-platform applications and facilitates efficient communication 
between devices, regardless of their underlying hardware or software 
specifications. 

The WoT architecture comprises several key components (Lagally et 



8  
 

 

 

 Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 26(1), 7–12. DOI: 10.37575/b/sci/240034 

al., 2023). At the forefront are WoT Thing Descriptions (TDs), which 
serve as the IoT equivalent of web pages. TDs provide a standardized, 
machine-readable format for describing the metadata, properties, 
interaction affordances, security requirements, and events associated 
with IoT devices. Another critical component is the WoT Binding 
Template, which extends TD functionality by defining how the 
abstract interactions described in TDs are implemented over various 
communication protocols. This ensures that devices not only 
communicate but do so in a consistent and comprehensible manner 
across diverse network environments. 

Complementing these components are WoT Discovery mechanisms, 
which facilitate the dynamic detection and integration of devices 
within the IoT ecosystem. These mechanisms enable the automatic 
identification and configuration of new devices as they join the 
network, significantly simplifying the process of expanding and 
maintaining IoT systems. Together, these components form the 
backbone of the WoT framework, promoting a seamless, 
standardized, and scalable approach to IoT device interoperability 
and management. 

2.2. Patterns 
A pattern is essentially a solution to a recurring problem within a 
specific context (Buschmann et al., 2001). Software patterns, such as 
design and architectural patterns, are instrumental in developing 
systems that are both flexible and extensible. Security patterns focus 
on constructing secure systems by detailing methods to manage 
threats, address vulnerabilities, and implement necessary security 
measures (Fernandez et al., 2016). Similarly, misuse patterns offer 
insights into how attacks are executed from the attacker's 
perspective. They specify the conditions conducive to an attack, the 
required security measures, and methods for gathering forensic data 
post-incident (Alnaim, 2022). 

In this paper, patterns are used to define the principal components of 
the WoT. Patterns serve as a robust mechanism for articulating 
comprehensive solutions that encompass not only software but also 
hardware and physical elements that collectively form ecosystems. 
These patterns are typically structured as templates with designated 
sections. In our approach, we adopt the POSA (Pattern-Oriented 
Software Architecture) template (Fernandez, 2013). The 
documentation of these patterns may include UML modeling 
techniques and formal language descriptions to ensure clarity and 
precision. 

2.3. Reference Architecture 
A RA serves as a conceptual blueprint for one or more domains, 
focusing on architectural aspects without addressing specific 
implementations (Angelov et al., 2012; Avgeriou, 2003 and Cloutier 
et al., 2010). An RA is designed to outline the core components of a 
system and their interactions, providing an architectural framework 
tailored to a specific domain. Key attributes that enhance the utility 
of RAs include configurability, extendibility, and reusability 
(Avgeriou, 2003). Beyond class and sequence diagrams, an RA may 
include a collection of use cases (UCs) and a set of roles (R) 
corresponding to its stakeholders or actors (Pankowska, 2015). 

RAs can be categorized into various types, such as those for the 
technology domain, which details platforms and design artifacts 
(Angelov et al., 2012); those for the application domain, which 
describe different types of applications; and those for the problem 
domain, which are similar to domain models but tailored for software 
solutions. Stakeholders of an RA may include groups, individuals, 
organizations, and systems that have a vested interest in the system 
and influence its design and development (Avgeriou, 2003). To 
enhance its security features, an RA can be transformed into an SRA 

by integrating security patterns that address and mitigate identified 
threats (Avgeriou, 2003 and Alnaim et al., 2022). 

3. Related Work 
Numerous studies have been conducted to develop and refine the 
architecture of WoT. Guinard et al. (2010) detailed a resource-
oriented architecture rooted in RESTful principles. Zhang, Cheng, and 
Ji (2012) introduced a Social WoT framework that merges RESTful 
web services with social networking elements. Guinard (2011) 
further advanced the field by proposing a four-layered WoT 
application architecture aimed at streamlining the development of 
applications involving smart devices. He also illustrated client–thing 
interaction through a sequence diagram, though his proposed 
architecture could benefit from a deeper exploration of its 
components and their interconnections. Mainetti et al. (2015) offered 
an architectural approach that includes mechanisms for discovering 
devices and virtualizing them outside their physical network. 
However, these architectures tend to be conceptual and lack detailed 
semantics. 

Additionally, Manta-Caro et al. (2024) discussed the new 
opportunities and challenges brought by IoT and WoT, particularly in 
the field of information retrieval. They proposed architectural 
solutions to manage the vast data generated by interconnected 
devices. The use of architectural patterns has also become prevalent 
in various technological contexts, providing targeted solutions within 
specific ecosystems. Alnaim et al., (2019) and Fernandez and Hamid 
(2015) applied patterns to model the network function virtualization 
architecture. Syed et al. (2016a) utilized patterns within Fog 
Computing to address particular challenges, while Hashizume et al. 
(2012) extensively employed patterns to tackle architectural issues in 
cloud environments. 

4. A Pattern for Web of Things Gateway 
• Intent: To enable interoperability and standardized interaction 

among diverse IoT devices and services in various application 
domains. 

• Context: Within the IoT ecosystem, devices and services must 
communicate effectively regardless of their underlying 
implementations and across multiple networking protocols. 

• Example: John's home contains various IoT devices, including a 
Bluetooth-enabled smart door lock, a Wi-Fi-connected TV, and smart 
lighting that operates on ZigBee. The diversity in communication 
protocols means each device requires its own specific application for 
control, complicating the management process. Currently, there is no 
unified standard that allows all these devices to be controlled 
seamlessly through a single application or platform. 

• Problem: IoT devices vary widely in their implementations and 
communication protocols, creating a heterogeneous ecosystem. To 
facilitate smooth and effective interaction between these devices, it is 
crucial to ensure interoperability across this diverse landscape. 

The solution is influenced by the following forces: 
1. Compatibility: Maintaining compatibility among an ever-

growing number of IoT devices is a significant challenge. As 
new models and versions are released, they must 
communicate and function with older devices without 
requiring frequent upgrades or replacements. 

2. Scalability: As IoT ecosystems expand in terms of both the 
number of devices and the volume of data generated, 
scalability becomes a critical concern. 

3. Interoperability: IoT devices vary in their platforms and 
protocols. Ensuring seamless interoperability among 
heterogeneous devices remains a core challenge. 

4. Discoverability: In an IoT ecosystem, devices frequently join 
and leave the network. Automatic discovery and integration of 
new devices are essential for maintaining an up-to-date and 
responsive system. 

5. Resource Constraints: IoT devices often have limitations in 
processing power, memory, and energy, which complicates 
the implementation of complex communication protocols 



9  
 

 

 

 Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 26(1), 7–12. DOI: 10.37575/b/sci/240034 

and data processing tasks. 
6. Security: IoT devices often collect and transmit sensitive data. 

Ensuring security and privacy is crucial, but the diversity of 
devices and protocols makes it difficult to implement uniform 
security measures. 

• Solution: Utilize the WoT building blocks, which support describing 
network interfaces for IoT devices and services, define 
communication protocols, and facilitate the discovery, consumption, 
and exposure of IoT devices ("Things"). 

• Structure: Figure 1 presents a UML class diagram for WoT 
architecture. A "Thing" represents one or more physical IoT devices 
within a network responsible for collecting data and performing 
actions. Things can interact with other Things. A node device, which 
could be an edge, fog, or cloud server, manages the interactions of 
multiple Things. Each Thing is described by its own TD, which 
provides a machine-readable vocabulary for defining the physical 
device. TDs can be implemented over multiple protocols, each 
requiring a different Binding Template. 
The WoT Discovery mechanism manages TDs for various devices. 
When a device (Thing) is discovered, its TD is retrieved by the WoT 
Discovery component, allowing clients or services to understand the 
capabilities and interaction affordances of the discovered Thing. The 
WoT Discovery component also communicates with the Node to 
register new devices joining the network and to query devices based 
on specific criteria. 
In this case, the Node may act as a client to the discovery service when 
searching for new devices to manage or integrate. Users can send 
commands to Things via the API, enabling interaction and control 
within the IoT ecosystem. 
 

Figure 1. Class diagram of the WoT pattern 

 
• Dynamics: This section delves into the operational aspects of the WoT 

architecture to elucidate how the various elements of the WoT 
architecture interact and coordinate in practical scenarios through 
illustrative sequence diagrams. Two UCs are presented: one in a Smart 
Agriculture System and the other in a Health Monitoring System. 

4.1. Use Case-1 (UC1): Unified Device Management 
Summary: This scenario demonstrates how diverse Thing devices are 

unified under a single management platform by utilizing 
the Node, which aggregates access to all the Things' 
properties. Figure 2 presents a sequence diagram for this 
UC. 

Actor: User 
Precondition: The Node is pre-configured with all connected Things. 

Description: Several IoT devices are installed in a user's premises and 
are ready to be utilized.  

1. The user launches a unified application (e.g., a mobile application) 
designed to communicate with the Node, which serves as the central 
point for device management in the home. 

2. The user sends a request to a Thing device to perform a task. 
3. The Node forwards the formatted commands to the Thing devices. 
4. The Thing devices acknowledge the completion of the commands 

and send confirmation to the Node. 
5. The Node relays the acknowledgment to the user.  

Postcondition: Requests sent to the diverse Thing devices are 
fulfilled using one unified control management platform. 

Figure 2. Sequence diagram for the use case "unified device management" 

 

4.2. Use Case-2 (UC2): Adjust Irrigation 
Summary: This scenario illustrates how an IoT moisture sensor 

autonomously monitors soil moisture levels and 
activates an irrigation process through a smart 
ecosystem when necessary. Upon detecting low 
moisture, the sensor's data prompts either user 
intervention or an automated response, triggering an 
irrigation controller to hydrate the soil. In this case, the 
scenario highlights how a controller initiates an 
irrigation request based on predefined rules within the 
Node. Figure 3 provides the sequence diagram for this 
UC. 

Actor: IoT sensor 

Precondition: The IoT sensor monitors soil moisture levels and 
detects that the soil moisture is below the predetermined threshold. 
Description: 

1. After measuring soil moisture, the sensor (a Thing) detects that the 
moisture level is below the predetermined threshold. 

2. The sensor sends the measurement data to the Node. 
3. The Node, utilizing WoT Discovery, identifies the sensor and retrieves 

its TD to interpret the data format and meaning. 
4. The Node sends a command to the irrigation controller, activating the 

irrigation system. 
5. The irrigation controller sends a confirmation or status update back 

to the Node. 

Postcondition: The Node provides the user with reports about the 
soil moisture level. 

Figure 3. Sequence diagram for use case "adjust irrigation" 

 

  



10  
 

 

 

 Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 26(1), 7–12. DOI: 10.37575/b/sci/240034 

4.3. Use Case-3 (UC3): Smart Emergency Response 
System 

Summary: This UC illustrates a Smart Healthcare Monitoring System 
that leverages the WoT architecture to enhance patient 
care by continuously monitoring health metrics through 
connected medical devices in a healthcare facility.  

Actors: IoT sensor, medical staff 

Precondition: All IoT medical devices are operational and connected 
to the WoT gateway, with the system configured to monitor and 
respond to specific health metric thresholds. 
Description: 

1. IoT health sensors (e.g., heart rate monitors and blood pressure 
sensors) continuously collect patient data and transmit it to the WoT 
gateway. 

2. The WoT gateway analyzes the incoming data against predefined 
health thresholds. If abnormalities are detected, it triggers alerts to 
medical staff and initiates necessary medical protocols. 

3. Based on the analyzed data, automated adjustments to medical 
devices may be performed, such as modifying oxygen levels or 
administering medication through connected dispensers. 

4. In critical conditions, the system automatically alerts emergency 
medical teams and provides detailed patient data to facilitate a rapid 
response. 

Postcondition: Appropriate medical responses are executed. 

• Implementation 

To understand the implementational aspects of WoT, we need to 
delve into its ecosystem and the possible scenarios where Thing 
devices are connected and implemented. Figure 4 shows a schema 
diagram of the WoT ecosystem. The ecosystem contains various 
heterogeneous IoT devices, some of which can be connected to each 
other, allowing for direct communication and collaboration. 

The devices can be implemented through edge or fog computing to 
optimize data processing and decision-making closer to the source of 
data generation, while others are implemented directly in the cloud 
for broader data analysis and storage. Some devices are owned by 
companies, indicating their integration into business operations, 
while others are owned by individuals. All devices are connected and 
controlled by WoT (i.e., a web browser), ensuring standardized 
interactions and seamless interoperability across this diverse device 
environment. 

Figure 4. Schema diagram of the WoT ecosystem 

 

A notable example of WoT implementation is the Mozilla WebThing 
Gateway (Bolar, 2020), a smart IoT gateway that emphasizes 
interoperability and security. It plays a crucial role in connecting 
various IoT devices, allowing them to communicate and interact 
effectively in a standardized manner. The gateway serves as the 
central point of interaction for devices in the WoT network, 
resembling the Node class in our pattern. 

• Known Uses 

This section highlights real-world applications of the WoT, illustrating 
its practical utility and adaptability in addressing complex challenges 
across various domains. These examples provide insights into how 

the WoT pattern enhances functionality, interoperability, and 
efficiency in diverse IoT systems. 

One example is Greenhouse Horticulture, which utilizes various 
sensors and facilities (such as heaters, CO2 generators, and sheet 
controllers) connected to a gateway and managed via the cloud. This 
system employs WoT architecture and WoT TDs to optimize 
environmental conditions, including temperature, humidity, and 
CO2 concentration, for plant growth. It demonstrates the application 
of WoT in agricultural technology (Matsukura and Kamiya, 2019). 

Another example is in education, where an IoT remote lab enables 
students to interact remotely with various IoT devices as part of a 
practical course (Korkan, 2020). This setup includes robotic arms, 
conveyor belts, motorized sliders, and sensors for atmospheric data. 
The course allows students to build mashup applications, deepening 
their understanding of WoT technologies. These applications 
leverage the WoT TD and Scripting API, providing hands-on 
experience in controlling physical devices and verifying actions via 
video streams. This UC emphasizes the importance of standardized 
resource sharing in educational settings (Steinhorst and Korkan, 
2020). 

Lastly, the Eclipse Thingweb Project leverages W3C WoT standards to 
create IoT solutions that are both scalable and interoperable.  

Key features of this implementation (Eclipse Foundation, ThingWeb) 
include:  
1. Device Description: Utilizing standardized formats to describe device 

information, capabilities, and data schemas. This ensures that devices 
can be understood and managed consistently across different systems.  

2. Device Integration: Providing connectivity for devices via various IoT 
protocols under a uniform interface. This approach enables diverse 
devices to communicate effectively, regardless of their underlying 
protocols.  

3. Device Description Validation: Ensuring consistent metadata for 
devices across directories, which is crucial for maintaining the 
accuracy and reliability of device information.  

4. Application Development: Offering a web browser-like runtime for 
developing portable IoT applications. This feature allows developers 
to create flexible, headless applications suited for various IoT scenarios.  

5. Other Services: Including several libraries, tools, and services such as 
node-wot for building IoT devices, a playground for TD validation, and 
Online Things for simulating IoT devices. This project provides a 
comprehensive set of tools for developers to build interoperable IoT 
solutions while maintaining flexibility in their development choices. 

• Consequences 
This pattern provides the following advantages: 
1. Compatibility: Utilizing TDs as a uniform interface allows 

devices with different models and versions to interact without 
direct compatibility issues. 

2. Scalability: Employing the Node as a central point to manage 
connections and data flow between a vast number of Thing 
devices enables the system to scale effectively. By offloading 
device management and communication handling to Nodes, 
which are designed to efficiently process and route messages 
across the network, the architecture supports a growing 
ecosystem. 

3. Interoperability: Leveraging Binding Templates alongside WoT 
TDs defines how devices communicate over various protocols. 
This setup ensures that devices can not only exchange data but 
also interpret and act on the information received, regardless of 
the underlying communication standards. 

4. Discoverability: Implementing dynamic discovery mechanisms 
within the WoT Node allows it to automatically detect new 
devices and their services based on their TDs. This facilitates the 
seamless addition and integration of devices into the ecosystem, 
enhancing system responsiveness and user experience. 

5. Security: Integrating security protocols directly into TDs and 
enforcing them through the Node ensures robust system 
protection. This includes specifying authentication mechanisms, 
data encryption methods, and access control policies within TDs, 
ensuring all interactions with and between devices adhere to 
predefined security standards. 
 



11  
 

 

 

 Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 26(1), 7–12. DOI: 10.37575/b/sci/240034 

• Related Patterns 
1. Cloud Ecosystem Pattern (Syed and Fernandez, 2018): Illustrates the 

dynamic interaction between IoT devices and various components of 
ecosystem patterns within the cloud infrastructure. 

2. Gateway Pattern for Integrated IoT Systems (Tekinerdogan and 
Köksal, 2018): Presents several gateway patterns integrated into IoT 
systems, including one focused on web services. 

3. Design Patterns for the Industrial Internet of Things (IIoT) (Bloom et al., 
2018): Describes communication protocols for IIoT applications. 

4. An Ontology Design Pattern for IoT Device Tagging System 
(Charpenay et al., 2015). 

5. A Pattern for Secure IoT Thing (Fernandez et al., 2007): Presents a 
pattern for adding security to IoT devices. 
 

5. Comparative Analysis 
In this section, we present a detailed comparative analysis to examine 
the key components that play pivotal roles in the WoT architecture , 
specifically focusing on API, Node, Thing, TD, Thing Discovery, and 
Binding Template. This focused approach enables a direct 
comparison of how each architecture incorporates and supports 
these essential elements, highlighting areas where our architecture 
provides significant improvements or novel contributions. 

As shown in Table 1, our architecture offers a more robust and 
flexible API, capable of supporting a diverse range of protocols and 
data formats, compared to the basic or RESTful-focused APIs in other 
architectures. The Node component, which is largely undefined in 
other works, is a key feature of our architecture. It enables 
sophisticated network operations and local data processing, which 
are crucial for real-time IoT applications. 

Moreover, our architecture enhances the management and 
interoperability of Things by providing advanced features for 
autonomous operations and dynamic, detailed descriptions. This 
ensures seamless integration and operability within IoT ecosystems, 
representing a significant advancement over the simpler object 
management and static descriptions seen in the compared 
frameworks. 

Additionally, the automated Thing Discovery mechanisms in our 
architecture support dynamic IoT environments, in contrast to the 
manual or socially enhanced methods in earlier models. Furthermore, 
the Binding Template in our architecture supports a variety of 
communication protocols, offering greater adaptability than the 
more limited implementations found in other studies. 

Table 1. Comparison of the proposed architecture with the existing architecture 
Architectural 
Component Our Architecture Guinard et 

al., (2010) 
Zhang et al., 

(2012) Guinard (2011) Mainetti et al., 
(2015) 

API 
API for device 

management and 
data interaction 

RESTful API 
for basic 

device 
interaction 

RESTful APIs 
integrated with 

social 
networking 

features 

RESTful API 
focusing on 

device 
interaction 

Limited API 
scope focused 
primarily on 

device discovery 

Node 

Node for 
managing network 

communication 
and processing 

Not explicitly 
defined 

Not explicitly 
defined 

Not explicitly 
defined 

Focus on 
virtualizing 

devices outside 
their physical 

network 

Thing 

Thing 
management with 

communication 
and control 

features 

Basic smart 
Things 

integration 

Enabled Things 
with limited 

control features 

Basic Thing 
management 

Basic Thing 
integration 

without 
extensive 

management 
features 

Thing 
Description 

Thing descriptions 
to facilitate 

interoperability 
and automation 

Basic static 
description 

Descriptions 
integrated with 
social profiles 

Structured 
descriptions for 

application 
development 

Not emphasized 

Thing 
Discovery 

Discovery 
mechanisms with 

support for 
dynamic 

environments 

Discovery 
mechanisms 

based on 
RESTful 
services 

Enhanced 
discovery 

through social 
interactions 

Not emphasized 

Advanced 
discovery 

mechanisms for 
virtualized 

environments 

Binding 
Template 

Templates 
supporting 

multiple protocols 
and data formats 

Basic binding 
using web 
standards 

Moderate 
binding 

capabilities with 
a focus on web 

integration 

Not explicitly 
defined 

Not emphasized 

6. Conclusions and Future Works 
This research presents an architectural pattern for the WoT, an area 
that has, until now, lacked precision in its modeling approach. The 
framework developed here not only aligns with the intricate 
requirements of the WoT environment but also enhances its 
interoperability and efficiency. The architecture proposed in this 
study is intended to serve as a foundational guide for future WoT 
architectures, providing a replicable and scalable approach for 
integrating the vast array of IoT devices into the web ecosystem. 
Additionally, the pattern lays the groundwork for creating a 
comprehensive RA for the IoT/WoT ecosystem. 

Biography 
Khalied M. Albarrak 
Department of Management Information Systems College of Business 
Administration, King Faisal University, Al-Ahsa, Saudi Arabia, 00966135895800,  
kalbarrak@kfu.edu.sa 

Dr. Albarrak, an Assistant Professor in the MIS department at King 
Faisal University, holds a B.Sc. in Computer Science (2009) from King 
Faisal University, an M.Sc. from King Abdullah University of Science 
and Technology (2012), and a Ph.D. from the University of 
Southampton (2019). His research areas include web sciences, open 
data, data analytics, artificial intelligence, e-governance, and digital 
transformation. 

ORCID: 0000-0001-9224-5926 

Acknowledgment  
This study could not have been initiated or completed without the 
encouragement and continued support of King Faisal University. 

References 
Achirei, S.D., Zvoristeanu, O., Alexandrescu, A., Botezatu, N.A., Stan, A., 

Rotariu, C. and Caraiman, S. (2020). Smartcare: On the design of an 
IoT-based solution for assisted living. In: International Conference 
on e-Health and Bioengineering (EHB), n/a(n/a), 1–4. IEEE. 
DOI: 10.1109/EHB50910.2020.9280185 

Alnaim, A.K. (2022). Misuse patterns from the threat of modification of non-
control data in network function virtualization. Future Internet, 
14(7), 201. DOI: 10.3390/fi14070201 

Alnaim, A.K., Alwakeel, A.M. and Fernandez, E.B. (2019). A Pattern for an 
NFV virtual machine environment. In: 13th Annual IEEE 
International Systems Conference, n/a(n/a), 1–6. IEEE. DOI: 
10.1109/syscon.2019.8836847  

Alnaim, A.K., Alwakeel, A.M. and Fernandez, E.B. (2022). Towards a security 
reference architecture for NFV. Sensors, 22(10), 3750. DOI: 
10.3390/s22103750 

Alwakeel, A.M., Alnaim, A.K. and Fernandez, E.B. (2019a). A Pattern for a 
virtual network function (VNF). In: 14th International Conference 
on Availability, Reliability and Security (ARES). 1–7. Canterbury, 
UK. DOI: 10.1145/3339252.3340519  

Angelov, S., Grefen, P. and Greefhorst, D. (2012). A framework for analysis 
and design of software reference architectures. Information and 
Software Technology, 54(4), 417–31. DOI: 
10.1016/j.infsof.2011.11.009  

Avgeriou, P. (2003). Describing, instantiating and evaluating a reference 
architecture: A case study. Enterprise Architecture 
Journal, 342(n/a), 1–24. 

Bloom, G., Alsulami, B., Nwafor, E. and Bertolotti, I.C. (2018). Design patterns 
for the industrial Internet of Things. In: 14th IEEE International 
Workshop on Factory Communication Systems (WFCS), n/a(n/a), 
1–10. DOI: 10.1109/wfcs.2018.8402353 

Bolar, T. (2020, August 18). Web of things Over IOT and its Applications. 
InfoQ. Available at: https://www.infoq.com/articles/web-of-
things-iot-apps/ (accessed on 30/11/2024). 

Buschmann, F., Meunier, R., Rohnert, H., Sornmerlad, P. and Stal, M. (2001). 
Pattern-Oriented Software Architecture: A system of Patterns. 
Volume 1. Wiley. 



12  
 

 

 

 Albarrak, K.M. (2025). Enhancing interoperability in the web of things: A reference architecture approach. Scientific Journal of King Faisal University: Basic and Applied Sciences, 26(1), 7–12. DOI: 10.37575/b/sci/240034 

Charpenay, V., Kabisch, S., Anicic, D. and Kosch, H. (2015). An ontology 
design pattern for IoT device tagging systems. In: 5th International 
Conference on the Internet of Things (IOT), n/a(n/a), 138–45. 
DOI: 10.1109/iot.2015.7356558   

Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E. and Bone, M. (2009). 
The concept of reference architectures. Systems Engineering, 
13(1), 14–27. Portico. DOI: 10.1002/sys.20129  

Eclipse Foundation (n/a). Eclipse ThingWeb. Available at: 
https://thingweb.io/ (accessed on 30/11/2024). 

Fernandez, E.B. and Hamid, B. (2015). A pattern for network functions 
virtualization. In: 20th European Conference on Pattern Languages 
of Programs, n/a(n/a), 1–9. DOI: 10.1145/2855321.2855369   

Fernandez, E., Pelaez, J. and Larrondo-Petrie, M. (2007). Attack patterns: A 
new forensic and design tool. Advances in Digital Forensics III, 
n/a(n/a), 345–57. DOI: 10.1007/978-0-387-73742-3_24  

Fernandez, E.B. (2013). Security Patterns in Practice: Designing Secure 
Architectures Using Software Patterns. John Wiley and Sons. DOI: 
10.5555/2531565  

Guinard, D. (2011). A web of Things Application Architecture: Integrating 
the Real-World into the Web. PhD Theiss, ETH Zurich. DOI: 
10.3929/ethz-a-006713673 

Guinard, D., Trifa, V. and Wilde, E. (2010). A resource-oriented architecture 
for the Web of Things. In: Internet of Things (IOT), n/a(n/a), 1–8.  
DOI: 10.1109/iot.2010.5678452    

Hashizume, K., Fernandez, E.B. and Larrondo-Petrie, M.M. (2012). A Pattern 
for Software-as-a-Service in Clouds. In: ASE/IEEE International 
Conference on Biomedical Computing (BioMedCom), 
n/a(n/a),140–4.  DOI: 10.1109/biomedcom.2012.29  

Korkan, E. (2020). Wot-Architecture Use Cases: Shared Devices. Available at: 
https://github.com/w3c/wot-architecture/blob/main/USE-
CASES/education.md  (accessed on 30/11/2024). 

Lagally, M., Matsukura, R., McCool, M., Toumura, K., Kajimoto, K., 
Kawaguchi, T. and Kovatsch, M. (2023). Web of things (WoT) 
architecture 1.1. PR-wot-architecturell-202307111. 

Mainetti, L., Mighali, V. and Patrono, L. (2015). A software architecture 
enabling the web of things. IEEE Internet of Things Journal, 2(6), 
445–54. DOI: 10.1109/biomedcom.2012.29  

Manta-Caro, C. and Fernández-Luna, J.M. (2024). IR.WoT: An architecture 
and vision for a unified web of things search engine. Sensors, 
24(11), 3302. DOI: 10.3390/s24113302  

Matsukura, R. and Takuki, K. (2019). Smart Agriculture: Greenhouse 
Horticulture. Available at: https://github.com/w3c/wot-
architecture/blob/main/USE-CASES/smart-agriculture.md 
(accessed on 30/11/2024). 

Nedeltcheva, G.N. and Shoikova, E. (2017). Models for innovative IoT 
ecosystems. In: International Conference on Big Data and Internet 
of Thing. DOI: 10.1145/3175684.3175710 

Pankowska, M. (2015). Stakeholder Oriented Enterprise Architecture 
Modelling. In: 12th International Conference on E-Business 
(ICETE15), n/a(n/a), 72–79. DOI: 10.5220/0005544700720079   

Steinhorst, S. and Ege, K. (2020). IoT Remote Lab. Available at:  
(https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc
.tm.cp/student/courses/950504601?$ctx=lang=en&$scrollTo=to
c_overview&$scrollto=toc_overview  (accessed on 30/11/2024). 

Syed, M.H. and Fernandez, E.B. (2016). A pattern for a virtual machine 
environment. In: The 23rd Conference on Pattern Languages of 
Programs, n/a(n/a), 1–8. DOI: 10.5555/3158161.3158172  

Syed, M.H. and Fernandez, E.B. (2018). A reference architecture for the 
container ecosystem. In: The 13th International Conference on 
Availability, Reliability and Security, n/a(n/a), 1–6. DOI: 
10.1145/3230833.3232854   

Syed, M.H., Fernandez, E.B. and Ilyas, M. (2016a). A Pattern for fog 
computing. In: The 10th Travelling Conference on Pattern 
Languages of Programs, n/a(n/a), 1–10. DOI: 
10.1145/3022636.3022649  

Tekinerdogan, B. and Köksal, Ö. (2018). Pattern based integration of internet 
of things systems. In: Internet of Things–ICIOT 2018: Third 
International Conference, Held as Part of the Services Conference 
Federation, SCF 2018, Seattle, WA, USA, Springer International 
Publishing, 3 (n/a). 19–33. DOI: 10.1007/978-3-319-94370-1_2  

ThingWeb. (n/a). Eclipse ThingWeb: Web of Things Components. Available 
at: https://www.thingweb.io/ (accessed on 30/11/2024). 

Zhang, C., Cheng, C. and Ji, Y. (2012). Architecture design for social web of 
things. In: 1st International Workshop on Context Discovery and 
Data Mining (ContextDD '12), n/a(n/a), 1–7. DOI: 
10.1145/2346604.2346608 

 


