الجملة العلمية لجامعة البـك فيصل
The Scientific Journal of King Faisal University

العلوم الأساسية والتطبيقية
Basic and Applied Sciences

The Zero-Divisor Graphs of Variation Monogenic Semigroups

الرسوهوات البيانيه لقواسمر صفريه في شبة زهرره دائرية هنـيرفة

Bana AI Subaiei and Abolape Deborah Akwu
Department of Mathematics and Statistics, College of Science, King Faisal University, Al Ahsa, Saud Arabia

قسم الرياضيات والاحصياء، كلية العلوم، جامعل الملك فيصل، الأحساء، المملكة العربية السعودية			
$\begin{gathered} \hline \text { RECEIVED } \\ \text { الاستقبال } \end{gathered}$	$\begin{gathered} \text { ACCEPTED } \\ \text { القبولو } \end{gathered}$	PUBLISHED	
12/09/2020	12/10/2020	01/12/2020	
/0iorg/10.37575///sid/016			

Abstract

The undirected graph $\Gamma\left(V S_{M n}\right)$ is the zero-divisor graph of the monogenic semigroup S_{M} with zero. The non-zero vertices X^{i} and x^{j} of this graph are adjacent whenever $i+j>n$ and $\operatorname{gcd}(i, j)=1$, where n is the order of $\Gamma\left(V S_{M n}\right)$. In this work, we consider some properties of the graph $\Gamma\left(V S_{M n}\right)$, such as the diameter, girth, chromatic number and clique. In addition, we show that $\Gamma\left(V S_{M n}\right)$ is a perfect, well-covered and coprime graph.

1. Introduction

Zero-divisor graphs were first considered in commutative rings by Beck (1988). This subject was later applied to semigroups by DeMeyer et al. (2002), and it was then expanded by many researchers (for example, see DeMeyer et al. (2005) and Wright [2007]).
The literature on zero-divisor graphs of semigroups discusses many classifications of semigroups, such as commutative semigroups and monogenic semigroups. The zero-divisor graphs of monogenic semigroups were studied by Das et al. (2013). This particular work will continue this investigation.
The zero-divisor graph $\Gamma(S)$ for a commutative semigroup S with $\{0\}$ is an undirected graph whose vertices are the zero-divisor of S (DeMeyer et al., 2002). In other words, the two vertices x and y in $Z(S)$ are adjacent when $x y=0$, where $Z(S)$ is the set of zerodivisors. In Das et al. (2013), the zero-divisor graph $\Gamma\left(S_{M}\right)$ for a monogenic semigroup S_{M} with $\{0\}$ is defined as an undirected graph whose nonzero vertices $x^{\mathrm{i}}, x^{\mathrm{j}} \in S_{M}$ are adjacent if they satisfy the following:
$x^{\mathrm{i}} \cdot x^{\mathrm{j}}=0$ only if $i+j>n$
where $1 \leq i, j \leq n$. In this work, we add one more condition to the graph obtained in Das et al. (2013) to obtain a new zero-divisors monogenic semigroup graph, and its characteristics will be studied. We will use the same notation as Das et al. (2013).
A semigroup is a set with associative binary operation. When a semigroup is generated by one element, it is called a monogenic semigroup. When S is a semigroup with $\{0\}$, the element $S \in S$ is called a zero-divisor if there is an element $t \in S$ that satisfies $s . t=$ $0 \Rightarrow s \neq 0$ or $t \neq 0$. Usually, the set of zero-divisors is denoted by $Z(S)$. Consider the monogenic semigroup S as such that $S_{M}=$ $\left\{x, x^{2}, \ldots, x^{\mathrm{n}}\right\}$ with $\{0\}$ is defined as follows:
$x^{\mathrm{i}} . x^{j}=x^{i+j}=0$ only if $i+j>n$ and $\operatorname{gcd}(i, j)=1$.
where x^{i} and $x^{j} \in S_{M}$ and $1 \leq i, j \leq n$. We will call this zerodivisors monogenic semigroup the variation monogenic semigroup, as denoted by $V S_{M n}$, where n is the order of $V S_{M n} . V S_{M n}$ is a semigroup. The undirected graph $\Gamma\left(V S_{M n}\right)$ on the n vertices is a graph whose nonzero zero-divisors vertices $x^{\mathrm{i}}, x^{\mathrm{j}} \in V S_{M n}$ are only

الرسم البياني الغير الموجاه (صفريه مع محايد. الرؤوس الغير الصفرية X' مرتبطة إذا حققت gcd (i,j)=1 الرسم البياني مثل القطر و مقاس المحيط و العدد اللوني و عدد العصبـ. وجد أن الرسم

البياني Γ بيان كامل و مغطى جيدا و أولي نسبي
adjacent if the rule in (1) holds. If vertices x^{i} and x^{j} are adjacent, then we write $x^{i} x^{j} \in E\left(\Gamma\left(V S_{M n}\right)\right)$, and we call it the edge set of Γ $\left(V S_{M n}\right)$. The vertex set of $\Gamma\left(V S_{M n}\right)$ will be denoted by $V\left(\Gamma\left(V S_{M n}\right)\right)$. DeMeyer et al. (2002) denote the set of vertices, which are adjacent to x^{i}, by ann ($x^{\text {i }}$).

1.1. Example:

Consider $\Gamma\left(V S_{M 5}\right)$, where $n=5$. The vertex set $V\left(\Gamma\left(V S_{M 5}\right)\right)=$ $\left\{x, x^{2}, x^{3}, x^{4}, x^{5}\right\}$, and the graph is given in Figure 1 below:

$\operatorname{ann}\left(x^{1}\right)=\left\{x^{5}\right\}, \operatorname{ann}\left(x^{3}\right)=\left\{x^{4}, x^{5}\right\}$, and $\operatorname{ann}\left(x^{5}\right)=$ $\left\{x^{1}, x^{2}, x^{3}, x^{4}\right\}$.

1.2. Example:

When considering $\Gamma\left(V S_{M 6}\right)$ given in Figure 2 below, the vertex set $V\left(\Gamma\left(V S_{M 6}\right)\right)=\left\{x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\}$.

Figure 2. The graph $\Gamma\left(V S_{M 6}\right)$

$\operatorname{ann}\left(x^{1}\right)=\left\{x^{6}\right\}, \operatorname{ann}\left(x^{3}\right)=\left\{x^{4}, x^{5}\right\}$, and $\operatorname{ann}\left(x^{5}\right)=$ $\left\{x^{2}, x^{3}, x^{4}, x^{6}\right\}$.

The diameter of a graph G , as denoted by $\operatorname{diam}(\mathrm{G})$, is defined as follows:

$$
\operatorname{diam}(\mathrm{G})=\max \left\{d_{G}(x, y): x, y \in V(G)\right\} .
$$

where d_{G} is the distance between two vertices. By the distance, we mean the shortest path between two vertices. So, the diameter is the
greatest distance between two vertices in the graph. However, the radius is the smallest distance between two vertices in the graph. The radius of a graph G , as denoted by $\operatorname{rad}(G)$, is given as follows:

$$
\operatorname{rad}(G)=\min \left\{d_{G}(x, y): x, y \in V(G)\right\}
$$

When there is no confusion about the graph in question G , we use $d(x, y)$ instead of $d_{G}(x, y)$ to represent the distance between x and y in G .
The girth of a graph is defined as the length of the shortest cycle in the graph. For any vertex x in G, the number of vertices that are adjacent to x is called the degree of the vertex x and is denoted by $\operatorname{deg}_{G}(x)$. Then, $\operatorname{deg}_{G}(x)=|\operatorname{ann}(x)|$. The maximum degree for G is denoted by $\Delta(G)$, which refers to the largest vertex's degree in G. The minimum degree for $\Gamma(G)$ is denoted by $\delta(G)$, which is the smallest vertex's degree in G. The non-increasing sequence of the vertices' degrees of graph G is called the degree sequence of G and denoted by $D S(G)$. The irregularity index of graph G is defined as the number of different terms in $D S(G)$ and denoted by $M W B(G)$, as in Das et al. (2013).
When considering the graph G and a subset D of $V(G), D$ is a dominating set for graph G if each vertex of $V(G)$ is adjacent to at least one vertex of D. The number of vertices of the smallest dominating set is called the domination number and denoted by $\gamma(\mathrm{G})$.
The coloring of graph G is an assignment of colors to vertices of G so that no two adjacent vertices are assigned the same color. The minimum number of colors is called the chromatic number of G and is denoted by $\chi(\mathrm{G})$. A coprime labelling of a graph G of order n is a labeling of the vertices of G with distinct integers $1,2, \ldots, n$, so that the labels on any two adjacent vertices are relatively prime. Any graph that admits coprime labelling is known as a coprime graph. If a subgraph of graph G is a complete graph, then this subgraph is called a clique. The number of vertices in the maximum clique (no other clique with more vertices) of G is called the clique number and denoted by $\omega(\mathrm{G})$. As stated by Lovasz (1972), graph G is a perfect graph if $\omega(\mathrm{G})=\chi(\mathrm{G})$.
The independent set of graph G is a set of vertices in G that satisfies that no two vertices are adjacent in the set. The independent number, which is denoted by $\alpha(\mathrm{G})$, is the cardinality of a maximum independent set in G . A graph G is said to be a well-covered graph when all its maximal independent sets are maximum.
In the next section, we give the characteristics of a variation monogenic semigroup.

2. Results

In this section, some properties of the graph $\Gamma\left(V S_{M n}\right)$ are investigated, such as girth, diameter, maximum degree, minimum degree, degree sequence, domination number, clique number, chromatic number, independent set, well-covered and coprime graph.
The next result gives the diameter of $\Gamma\left(V S_{M n}\right)$.

2.1. Theorem:

When $V S_{M n}$ is a variation monogenic semigroup, the diameter of $\Gamma\left(V S_{\mathrm{Mn}}\right)$ is as follows:

$$
\operatorname{diam} \Gamma\left(V S_{M n}\right)=\left\{\begin{array}{c}
1, n=2 \\
2, n>2 \text { and prime } \\
3, \text { if otherwise }
\end{array}\right.
$$

Proof: First, when we consider the graph $\Gamma\left(V S_{M n}\right)$ with $n=2$, It is obvious that the greatest path in $\Gamma\left(V S_{M n}\right)$ is 1 , which provides the diameter of the graph. Next, we split the remaining problem into the following two cases:

Case 1: when n is a prime number. The vertex x^{n} is adjacent to all the vertices in $\Gamma\left(V S_{M n}\right)$ since the $\operatorname{gcd}(i, j)=1$ and $n+i>n$, for every vertex x^{i} in $\Gamma\left(V S_{M n}\right)$, where $i<n$. Hence, the result follows from Theorem 1 in Das et al. (2013).

Case 2: when n is not a prime number. When there are the vertices x^{i}, x^{j}, x^{r} in $\Gamma\left(V S_{M n}\right)$ so that x^{i} and x^{j} are not adjacent, $\operatorname{gcd}(n, j) \neq 1$ and $\operatorname{gcd}(i, n)=\operatorname{gcd}(r, n)=\operatorname{gcd}(j, r)=1$, where $1<j, r<n$ and $1 \leq i<n$. Vertex x^{i} is adjacent to only vertex x^{n} or x^{n-1} since $i+n>n$ and $\operatorname{gcd}(i, n)=1$. The diamater of $\Gamma\left(V S_{M n}\right)$ can be viewed as the distance between vertex x^{i} and vertex $x^{\text {j }}$. This is $x^{\mathrm{i}}-x^{\mathrm{n}}-x^{\mathrm{r}}-x^{\mathrm{j}}$, which gives $\operatorname{diam}\left(\Gamma\left(V S_{M n}\right)\right)=3$, as required.

2.2. Theorem:

Let $V S_{M n}$ be a variation monogenic semigroup. Then, $\operatorname{rad}\left(\Gamma\left(V S_{M n}\right)\right)=1$.
The proof is straightforward since the vertex x is adjacent to vertex x^{n} only.

2.3. Theorem:

When $V S_{M n}$ is a variation monogenic semigroup, the girth of $\Gamma\left(V S_{M n}\right)$ is 3 for $n>4$.
Proof: Let p denote the highest prime number that is less or equal to n. The definition of $\Gamma\left(V S_{M n}\right)$ shows that $x^{\mathrm{p}} x^{\mathrm{p}-1}=0$ and $x^{\mathrm{p}-1} x^{\mathrm{p}-2}=$ 0 . Additionally, we have $x^{\mathrm{p}} x^{\mathrm{p}-2}=0$ for $2(p-1)>n$. Therefore, we have $x^{\mathrm{p}}-x^{\mathrm{p}-1}-x^{\mathrm{p}-2}-x^{\mathrm{p}}$. Therefore, the girth is 3 for $n>4$.
For $n \leq 4, x^{\mathrm{p}-1} x^{\mathrm{p}-2} \neq 0$ since $2 p-3$ is not greater than n. Therefore, $x^{\mathrm{p}-1} x^{\mathrm{p}-2} \notin E\left(\Gamma\left(V S_{M n}\right)\right)$, which implies that there is no cycle $x^{\mathrm{p}}-x^{\mathrm{p}-1}-x^{\mathrm{p}-2}-x^{\mathrm{p}}$ for $n \leq 4$. Hence, the girth does not exist for $n \leq 4$.

2.4. Theorem:

When p is the highest prime number that is less or equal to n, then for any variation monogenic semigroup $V S_{M n}$, the maximum degree and minimum degree of $\Gamma\left(V S_{M n}\right)$ are $\Delta\left(\Gamma\left(V S_{M n}\right)\right)=p-1$ and $\delta\left(\Gamma\left(V S_{M n}\right)\right)=1$.
Proof: For $p=n$, the result follows from Das et al. (2013). When we assume that $p \neq n$, vertex x^{p} has the maximum degree. Therefore, $x^{\mathrm{P}} x^{\mathrm{i}}=0$ if $p+i>n$ and $\operatorname{gcd}(p, i)=1$. This implies that $x^{\mathrm{P}} x^{\mathrm{i}}=0$ for all $i>n-p$, that is $n-p<i \leq n$. Furthermore, $\operatorname{deg}\left(x^{p}\right)=|i|, \quad$ where $|i|=(n-(n-p))-1=$ $p-1\left(x^{\mathrm{P}} x^{\mathrm{p}} \notin E\left(\Gamma\left(V S_{M n}\right)\right)\right.$ since $\Gamma\left(V S_{M n}\right)$ is a simple graph $)$. Hence, the maximum degree is $p-1$.
Additionally, by definition of $\Gamma\left(V S_{M n}\right), x$ is adjacent to only x^{n}. Therefore, the minimum degree is 1 .

2.5. Corollary:

$\left|\operatorname{ann}\left(x^{p}\right)\right|=p-1$, where p is the highest prime number that is less or equal to n.

2.6. Example:

Consider the graph $\Gamma\left(V S_{M 8}\right)$ with the vertex set $\left\{x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, x^{8}\right\}$ given in Figure 3.

This graph has a $\operatorname{diam}\left(\Gamma\left(V S_{M 8}\right)\right)=3, \operatorname{rad}\left(\Gamma\left(V S_{M 8}\right)\right)=1$, $\operatorname{girth}\left(\Gamma\left(V S_{M 8}\right)\right)=3$,
$\Delta\left(\Gamma\left(V S_{M 8}\right)\right)=6$ and $\delta\left(\Gamma\left(V S_{M 8}\right)\right)=1$.

2.7. Theorem:

For any positive integer of n, i and r with $1 \leq i \leq n$, let $K_{\mathrm{i}}=$ $\{r: n-i<r \leq n$ and $\operatorname{gcd}(i, r)=1\}$ and $m_{i}=\left|K_{\mathrm{i}}\right|$, then the degree sequence of the graph $\Gamma\left(V S_{M n}\right)=m_{1}, m_{2}, \ldots, m_{n}$.
The proof follows directly from the definition of $\Gamma\left(V S_{M n}\right)$. Below is an example that illustrates the result.

2.8. Example:

Consider the graph $\Gamma\left(V S_{M 6}\right)$ with the vertex set $\left\{x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\}$. Let K_{i} be the degree of vertex x^{i}, where $x^{i} \in$ $V\left(\Gamma\left(V S_{M 6}\right)\right.$. Then, $\left|K_{1}\right|=|\{6\}|=1,\left|K_{2}\right|=|\{5\}|=1$, $\left|K_{3}\right|=|\{4,5\}|=2,\left|K_{4}\right|=|\{3,5\}|=2,\left|K_{5}\right|=$ $|\{2,3,4,6\}|=4$, and $\left|K_{6}\right|=|\{1,5\}|=2$. Therefore, the degree sequence of $\Gamma\left(V S_{M 6}\right)=1,1,2,2,2,4$.

2.9. Remark:

Let C^{*} denote the set of prime numbers that are less or equal to n. The irregularity index of $\Gamma\left(V S_{M n}\right)$ is given as $\left|C^{*}\right|$.

2.10. Definition:

Let p be the greatest prime number that is less than n, and let C denote the class of x^{i} so that $n+i>n$ and $\operatorname{gcd}(i, n) \neq 1$ for $1 \leq$ $i \leq n-p$. Additionally, let Q denote the class of vertices $x^{i k}$ so that $x^{k} \notin \mathrm{C}$ where k is prime and $1 \leq k \leq n-p$.
Note that if C is empty then Q is empty.

2.11. Theorem:

For the positive integer n,

$$
\gamma\left(\Gamma\left(V S_{M n}\right)=\left\{\begin{array}{c}
1, n \text { is prime } \\
2, C, Q \text { are empty } \\
3, C \text { is not empty and } Q \text { is empty } \\
4, C, Q \text { are empty }
\end{array}\right.\right.
$$

Proof: We split the problem into the following four cases:
Case 1: When n is prime,
n is relatively prime to i, where $i=1,2, \ldots, n-1$. When $D \subset V$ $\left(\Gamma\left(V S_{M n}\right)\right)$, it follows from the definition of $\Gamma\left(V S_{M n}\right)$ that $x^{\mathrm{n}} x^{\mathrm{i} \in}$ $E\left(\Gamma\left(V S_{M n}\right)\right)$ for all i. Hence, $D=\left\{x^{n}\right\}$ is the dominating set of $\Gamma\left(V S_{M n}\right)$ with cardinality one whenever n is prime.
Case 2: When C and Q are empty, it follows from the definition of C that there is i for $1 \leq i \leq n-p$ so that $\operatorname{gcd}(i, n)=1$ since C is empty. When $D=\left\{x^{\mathrm{n}}, x^{\mathrm{p}}\right\} \subset V\left(\Gamma\left(V S_{M n}\right)\right)$, we have $x^{\mathrm{n}} x^{\mathrm{i}} \in E$ $\left(\Gamma\left(V S_{M n}\right)\right)$ for all $x^{i}, 1 \leq i \leq n-p$, which follows from the definition of $\Gamma\left(V S_{M n}\right)$. Additionally, since p is the greatest prime number that is less or equal to n, we have $x^{\mathrm{p}} x^{\mathrm{t}} \in E\left(\Gamma\left(V S_{M n}\right)\right)$ for all x^{t}, where $n-p+1 \leq t \leq n$. Therefore, $D=\left\{x^{\mathrm{n}}, x^{\mathrm{p}}\right\}$ is the dominating set with cardinality 2 .
Case 3: When C is not empty and Q is empty. Since C is not empty, it follows that there is $1 \leq i, j \leq n-p$ so that $\operatorname{gcd}(n, i)=1$ and $\operatorname{gcd}(n, j) \neq 1$. Also, there is a vertex x^{r} so that $\operatorname{gcd}(r, j)=1$ and $p<r<n$. Let $D=\left\{x^{\mathrm{n}}, x^{\mathrm{r}}, x^{\mathrm{p}}\right\} \subset V\left(\Gamma\left(V S_{M n}\right)\right)$ and $r+$ $j>n$. Then, it is sufficient to show that D is the dominating set for $\Gamma\left(V S_{M n}\right)$. Consider the set of vertices $\left\{x^{t}\right\}$ so that $n-p+1 \leq$ $t \leq n$. The set of vertices x^{t} is adjacent to vertex x^{p} since p is prime and $t+p>n$. Next, consider the set of vertices $x^{i} \notin C$, where $1 \leq i \leq n-p$. It follows that x^{n} is adjacent to all x^{i} since $\operatorname{gcd}(n, i)=1$ and $n+i>n$. Lastly, consider the set of vertices $\left\{x^{i}\right\} \in C$, where $1 \leq j \leq n-p$. Vertex x^{r} is adjacent to all $\left\{x^{i}\right\}$
since $\operatorname{gcd}(r, j)=1$ and $r+j>n$. Hence, $D=\left\{x^{n}, x^{r}, x^{p}\right\}$ is the domnating set with cardinality 3 .
Case 4: When C and D are not empty. Let $D=D^{\prime} \cup D^{\prime \prime}$ where D^{\prime} is the dominating set of $\Gamma\left(V S_{\text {Mn }}\right)$ when C is not empty and $D^{\prime \prime}$ is the dominating set for the class Q. It follows from case 3 above that $\left|D^{\prime}\right|=3$. Let $1 \leq i, k, q \leq n-p$ so that $\operatorname{gcd}(n, i) \neq 1$ and $\operatorname{gcd}(n, q) \neq 1$. Note that $q=k i$ where k is a prime number with $x^{k} \notin C$. Next, consider the class Q containg the set of vertices $x^{q}=$ x^{ki}. Since $\operatorname{gcd}(n, i) \neq 1$, it follows from the definition of $\Gamma\left(V S_{M n}\right)$ that $\operatorname{gcd}(n, q) \neq 1$, which implies that $x^{n} x^{q} \notin$ $E\left(\Gamma\left(V S_{M n}\right)\right)$. Also, $x^{q} x^{\rho} \notin E\left(\Gamma\left(V S_{M n}\right)\right)$ since $p+q \leq n$. By case 3 above and from the definition of class C, we have $\operatorname{gcd}(r, i)=1$ and $\operatorname{gcd}(r, k) \neq 1$ for $p+1 \leq r \leq n$, which implies that $\operatorname{gcd}(r, q) \neq 1$ and so $x^{\ulcorner } x^{q} \notin E\left(\Gamma\left(V S_{M n}\right)\right)$. Therefore, there is $\left\{x^{s}\right\}$ for $p<s \leq n$ so that $D^{\prime \prime}=\left\{x^{s}\right\}$, where $s+q>n$ and $\operatorname{gcd}(s, q)=1$. Hence, $D=D^{\prime} \cup D^{\prime \prime}=$ $\left\{x^{\mathrm{n}}, x^{r}, x^{\mathrm{p}}\right\} \cup\left\{x^{s}\right\}$ is the dominating set with cardinality 4 .

2.12. Example:

Consider the graphs $\Gamma\left(V S_{M 9}\right)$ and $\Gamma\left(V S_{M 10}\right)$. The class C and Q are empty in the case of $\Gamma\left(V S_{M 9}\right)$. Additionally, class C is not empty and Q is empty in the case of $\Gamma\left(V S_{M 10}\right)$. Therefore, $\gamma\left(\Gamma\left(V S_{M 9}\right)\right)=$ $\left|\left\{x^{7}, x^{9}\right\}\right|=2$ and $\gamma\left(\Gamma\left(V S_{M 10}\right)\right)=\left|\left\{x^{7}, x^{9}, x^{10}\right\}\right|=3$.

2.13. Definition:

For the positive integer n, let $\pi(n)=\left\{p_{1}, p_{2}, \ldots, p_{\mathrm{k}}\right\}$ be the set of consecutive prime numbers that is less or equal to n that satisfies $p_{\mathrm{t}}+p_{\mathrm{t}+1}>n$. The total number of elements in $\pi(n)$ is denoted by $\pi^{*}(n)=|\pi(n)|$.

2.14. Definition:

Let $\pi(n)$ be given as in Definition 2.12. Define S_{f}^{*} as the positive integers $\left\lceil\frac{n}{2}\right\rceil<s_{f}^{*} \leq n$ so that the following happens:

1) $s_{f}^{*} \notin \pi(n)$
2) $\operatorname{gcd}\left(s_{f}^{*}, p_{f}\right)=1$ for all $p_{\mathrm{f}} \in \pi(n)$
3) $\operatorname{gcd}\left(s_{f}^{*}, s_{l}^{*}\right)=1$ for any pair $\left\lceil\frac{n}{2}\right\rceil<s_{f}^{*}, s_{l}^{*} \leq n$

The number of s_{f}^{*} is defined as $S^{*}=\left|s_{f}^{*}\right|$

2.15. Theorem:

Let $V S_{M n}$ be a variation monogenic semigroup. The chromatic number of $\Gamma\left(V S_{M n}\right)$ is given as $\pi^{*}(n)+S^{*}$.
Proof: Note that $x^{p_{f}} x^{p_{l}} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$ for any $p_{t} p_{l} \in \pi(n)$. Therefore, we need $\pi^{*}(n)$ distinct colors to color all the vertices $x^{p_{f}}$ where $p_{f} \in \pi(n)$. Let color C_{1} be assigned to vertex $x^{p_{1}}$, where $p_{1} \in \pi(n)$, then it is obvious that $x^{r} x^{p_{1}} \notin \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$ for r prime and $r \notin \pi(n)$. This implies that color C_{1} can be assigned to all vertices x^{r}.
Next, consider the set of vertices $X^{S_{f}}{ }^{*}$ so that $X^{S_{f}}{ }^{*} \notin \pi(n),\left\lceil\frac{n}{2}\right\rceil<$ $s_{f}{ }^{*} \leq n_{n}$. For any pair $s_{f}{ }^{*}, s_{l}{ }^{*}, x^{s_{f}}{ }^{*} x^{s_{l}} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$ and $x^{p_{f}} \chi^{s_{f}}{ }^{*} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$, which follows from the definition of $s_{f}{ }^{*}$ and $\Gamma\left(V S_{M n}\right)$. There is a need of an additional S^{*} colors to color the set of vertices $\left\{x^{s_{f}}\right\}$. Furthermore, the set of vertices $\left\{x^{m}\right\}$, where $1<m \leq n$, can be assigned the same color that was assigned to vertex $\left\{x^{s_{f}{ }^{*}}\right\}$ if $\operatorname{gcd}\left(m, s_{f}{ }^{*}\right) \neq 1$.
Lastly, vertex x can be assigned any color that was assigned to the vertices of the graph, provided that the color is different from the color that was assigned to vertex x^{n}. Hence, the total number of colors needed to color the graph $\Gamma\left(V S_{M n}\right)$ is $\pi^{*}(n)+S^{*}$.

2.16. Theorem:

When $V S_{M n}$ is a variation monogenic semigroup, the clique number
of $\Gamma\left(V S_{M n}\right)$ is given as $\pi^{*}(n)+S^{*}$.
Proof: Note that all the vertices $x^{p_{i}}, p_{i} \in \pi(n)$ are adjacent to each other, which follows from the definition of $\pi(n)$ and $\Gamma\left(V S_{M n}\right)$. Next, consider the set of vertices $\left\{x^{S_{f}}\right\}$ where $\left\lceil\frac{n}{2}\right]<s_{f}{ }^{*} \leq n$. It is clear that $x^{p_{i}} x^{S_{f}} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$ since $g c d\left(p_{i}, S_{f}{ }^{*}\right)=1$. In addition, let $\left\{x^{t}\right\}$ be the set of vertices in $\Gamma\left(V S_{M n}\right)$ so that $1 \leq t<p_{1}$ and $p_{1} \in \pi(n)$. It is obvious that $x^{t} x^{p_{1}} \notin E\left(\Gamma\left(V S_{M n}\right)\right)$ since $t+p_{1}<$ n. Also, for the pairs of vertices $x^{S f^{*}}, x^{s l^{*}} ; x^{S f^{*}} x^{s l^{*}} \in E\left(\Gamma\left(V S_{M n}\right)\right)$ since gcd $\left(s_{f}{ }^{*}, s_{l}{ }^{*}\right)=1$ and $s_{f}{ }^{*}+s_{l}{ }^{*}>n$, which follows from the definition $S_{f}{ }^{*}$. Hence, the clique number of $\Gamma\left(V S_{M n}\right)$ is given as $\pi^{*}(n)+S^{*}$.

2.17. Remark:

The graph $\Gamma\left(V S_{M n}\right)$ is a perfect graph since $\chi\left(\Gamma\left(V S_{M n}\right)\right)=\omega$ $\left(\Gamma\left(V S_{M n}\right)\right)=\pi^{*}(n)+S^{*}$.

2.18. Example:

For the graph $\Gamma\left(V S_{M 7}\right)$, we have $\pi(7)=\{3,5,7\}$ and so $\pi^{*}(7)=$ 3. Also, $S^{*}=0$. Then, $\chi\left(\Gamma\left(\mathrm{VS}_{\mathrm{M} 7}\right)\right)=\pi^{*}(7)+S^{*}=3+0=3=\omega$ ($\Gamma\left(V S_{M 7}\right)$).
For the graph $\Gamma\left(V S_{M 8}\right)$, we have $\pi(8)=\{5,7\}$ and so $\pi^{*}(8)=2$. Moreover, $S^{*}=1$. Then, $\chi\left(\Gamma\left(\mathrm{VS}_{\text {м }}\right)\right)=\pi^{*}(8)+S^{*}=2+1=3=$ $\omega\left(\Gamma\left(V S_{M 8}\right)\right)$.

Figure 4. The graph $\Gamma\left(V S_{M 8}\right)$ and $\Gamma\left(V S_{M 7}\right)$

For $\Gamma\left(V S_{M 7}\right)$, the minimum number of colors is three, and they are $C_{1}=\left\{x^{7}\right\}, C_{2}=\left\{x^{5}, x^{2}, x\right\}$ and $C_{3}=\left\{x^{6}, x^{4}, x^{3}\right\}$. The complete subgraphs (cliques) from $\Gamma\left(V S_{M 7}\right)$ are $\left\{x^{5}, x^{6}, x^{7}\right\}$. Hence, $\omega\left(\Gamma\left(V S_{M 7}\right)\right)=3$.
For $\Gamma\left(V S_{M 8}\right)$, the minimum number of colors is three, which are C_{1} $=\left\{x^{3}, x^{6}, x^{4}, x^{2}\right\}, \mathrm{C}_{2}=\left\{x^{7}, x\right\}$ and $C_{3}=\left\{x^{5}, x^{3}\right\}$. The complete subgraphs (cliques) from $\Gamma\left(V S_{M 8}\right)$ are $\left\{x^{5}, x^{6}, x^{7}\right\}$. Hence, $\omega\left(\Gamma\left(V S_{M 8}\right)\right)=3$.

2.19. Lemma:

Let $V S_{M n}$ be a variation monogenic semigroup, then $\alpha\left(\Gamma\left(V S_{M n}\right)\right) \geq$ $\left\lceil\frac{n}{2}\right\rceil$.
Proof: We know that $\frac{n}{2} \leq\left\lceil\frac{n}{2}\right\rceil$. For all $1 \leq i, j \leq\left\lceil\frac{n}{2}\right]$, it is clear that $i+j \leq$ n. Hence, χ^{j} is not adjacent with x^{j}. Therefore, $\alpha\left(\Gamma\left(V S_{M n}\right)\right) \geq\left\lceil\frac{n}{2}\right]$.

2.20. Remark

Let n be a positive integer. Define $z_{f}{ }^{*}$ as the positive integers where $\left|\frac{n}{2}\right|<z_{f}{ }^{*}<n$ so that the following happens:

1) $z_{f}{ }^{*}$ is not prime
2) $\operatorname{gcd}\left(z_{f}{ }^{*}, h_{v}\right) \neq 1$, or when $\operatorname{gcd}\left(z_{f}{ }^{*}, h_{v}\right)=1$, then $z_{f}{ }^{*}+h_{v} \leq$ n for all $1<h_{v} \leq\left\lceil\frac{n}{2}\right\rceil$
The number of $z_{f}{ }^{*}$ is defined as $Z^{*}=\left|z_{f}{ }^{*}\right|$. Hence, $\alpha\left(\Gamma\left(V S_{M n}\right)\right)=$ $\left\lceil\frac{n}{2}\right\rceil+Z^{*}$.

2.21. Theorem:

The graph $\Gamma\left(V S_{M n}\right)$ is a well-covered graph.
Proof: We need to show that all maximal independent sets
$\alpha\left(\Gamma\left(V S_{M n}\right)\right)$ given in Remark 2.19 are maximum.
Next, for $z_{f}{ }^{*}$ and h_{v}, as defined in Remark 2.19, suppose there is a vertex $x^{x^{*}} \neq x^{z_{f}}$, where $x^{v^{*}} \in V\left(\Gamma\left(V S_{M n}\right)\right)$ and $\left.c^{*}\right\rangle\left\lceil\left.\frac{n}{2} \right\rvert\,\right.$. Additionally, let $x^{h_{v}}, x^{*} \in \alpha^{*}\left(\Gamma\left(V S_{M n}\right)\right)$ for some maximal independent sets $\alpha^{*}\left(\Gamma\left(\mathrm{VS}_{\mathrm{Mn}}\right)\right)$ in $\Gamma\left(V S_{M n}\right)$. Note that $\operatorname{gcd}\left(c^{*}, h_{v}\right)=1$ and $c^{*}+h_{v}>n$ since $x^{*^{*}} \neq x^{z_{f}^{*}}$, which follows on from Remark 2.19. This implies that $x^{x^{*}} x^{h_{v}} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$, which contradicts the assumption that $\alpha^{*}\left(\Gamma\left(V S_{M n}\right)\right)$ is a maximal independent set. Therefore, $x^{*}=x^{z_{f}}$, which means that every maximal independent set is maximum in $\alpha\left(\Gamma\left(V S_{M n}\right)\right)$. Hence, $\alpha\left(\Gamma\left(V S_{M n}\right)\right)$ is a well-covered graph.

2.22. Proposition:

Let $\pi(n)=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ be the set of consecutive prime numbers that are less or equal to n so that $p_{t}+p_{t+1}>n$. In graph $\Gamma\left(V S_{M n}\right)$, we have the following:
i) If $i, j \in \pi(n)$, then there is a cycle of length 3 that contains x^{j} and x^{j}.
ii) If $i, j \notin \pi(n)$, and $i, j \neq 1,2$ are prime numbers, then there is a cycle of length 4 that contains x^{j} and x^{j}.
Proof: i) Since $i, j \in \pi(n)$, then $i+j>n$ and $\operatorname{gcd}(i, j)=1$. Hence, x^{\prime} is adjacent to x^{j}. Now there are two cases as follows:
a) If $i<j$, take $k=n-i+\delta$ where $0 \leq \delta \leq n$. δ guarantees that $k \neq i, j$. Since j is prime and $k \neq j$, then $\operatorname{gcd}(k, j)=1$. Also, $k+j=n-i+\delta+j>n$, since $i<j$. Therefore, x^{j} is adjacent to x^{k}. Moreover, since i is prime and $k \neq i$, then $\operatorname{gcd}(k, i)=1$. Also, $k+i=n-i+\delta+i=n+\delta>n$. Then, x^{k} is adjacent to x^{j}. Therefore, $x^{\mathrm{i}}-x^{\mathrm{j}}-x^{\mathrm{k}}-x^{\mathrm{i}}$ is a cycle of length 3 , which contains x^{i} and x^{j}.
b) If $j<i$. Take $k=n-j+\delta^{\prime}$, where $0 \leq \delta^{\prime} \leq n$. δ^{\prime} guarantees that $k \neq i, j$. The result uses the same arguments in case (a) above.
ii) Since i, j are prime numbers and neither of them are in $\pi(n)$, then $i+j \leq n$. Hence, x^{j} is not adjacent to x^{j}. This means that it is impossible to find a cycle of length 3 that contains x^{j} and x^{j}. Also, $i, j<n$ and $i, j<n-1$ since i, j are not in $\pi(n)$. Then, since $i, j \neq 1,2$ we have that $i+n>n, i+(n-1)>n, j+n>$ $n, j+(n-1)>n$. Therefore, $x^{i}-x^{n}-x^{j}-x^{n-1}-x^{i}$ is a cycle of length 4 that contains x^{i} and x^{j}.

2.23. Theorem:

Let $x^{i}-x^{j}-x^{z}$ be a path of length 3 in $\Gamma\left(V S_{M n}\right)$. If $i=1$ or 2 , then $\left|\operatorname{ann}\left(x^{\prime}\right) \cap \operatorname{ann}\left(x^{z}\right)\right|=1$.
Proof: We have split the problem into the following two cases:
Case 1: When $i=1$. Recall that ann $\left(x^{\prime}\right)=x^{n}$ and $x x^{n} \in$ $\mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$, which follows from the definition of $\Gamma\left(V S_{M n}\right)$. Therefore, we have $j=n$, which implies that $x^{n} x^{z} \in \mathrm{E}\left(\Gamma\left(\mathrm{VS}_{M_{n}}\right)\right)$, then $x^{n} \in \operatorname{ann}\left(x^{z}\right)$. Therefore, $x^{n} \in \operatorname{ann}\left(x^{\prime}\right) \cap \operatorname{ann}\left(x^{z}\right)$. Hence, $\left|\operatorname{ann}\left(x^{\prime}\right) \cap \operatorname{ann}\left(x^{2}\right)\right|=1$ since $\left|\operatorname{ann}\left(x^{\prime}\right)\right|=\left\{x^{n}\right\}=1$.
Case 2: When $i=2$. If n is odd, then x^{2} is adjacent to x^{n} and not adjacent to x^{n}. Hence, the result follows from case 1 above. If n is even, then $x^{2} x^{n-1} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$, which follows from the definition of $\Gamma\left(V S_{M n}\right)$. Therefore, $x^{2} x^{n-1} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$, which implies that $j=$ $n-1$. Also, for $x^{j} x^{z} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right), j+z>n$ and $\operatorname{gcd}(j, z)=1$. This is true since $n-1+z>n$ for $z>1$. Therefore, $x^{n-1} \in \operatorname{ann}\left(x^{z}\right)$. That is, $x^{n-1} \in \operatorname{ann}\left(x^{\prime}\right) \cap$ ann $\left(x^{z}\right)$. Hence, $\left|\operatorname{ann}\left(x^{i}\right) \cap \operatorname{ann}\left(x^{2}\right)\right|=1$ since $\left|\operatorname{ann}\left(x^{\prime}\right)\right|=\left\{x^{n-1}\right\}=1$.

From Proposition 2.21 and Theorem 2.22, the following can be deduced:

2.24. Corollary:

A cycle in $\Gamma\left(V S_{M n}\right)$ cannot contain vertex x^{i}, where $i=1$ or 2 .

2.25. Corollary:

$\ln \Gamma\left(V S_{M n}\right)$, we have the following:

1) $\operatorname{ann}\left(x^{1}\right)=x^{n}$,
2) $\operatorname{ann}\left(x^{2}\right)=\left\{\begin{array}{c}x^{n}, n \text { is odd } \\ x^{n-1}, n \text { is even }\end{array}\right.$

2.25. Proposition:

A pentagon $x^{i}-x^{j}-x^{k}-x^{f}-x^{\mathrm{t}}-x^{\mathrm{i}}$ cannot be in $\Gamma\left(V S_{M n}\right)$ whenever $n<8$.
Proof: We will prove this using a contradiction argument. Suppose there is a pentagon $x^{i}-x^{j}-x^{k}-x^{t}-x^{t}-x^{i}$ when $n<8$. From Corollary 2.24 , we get $i, j, k, f, t \neq 1$ or 2 . Now we have the following two cases:
Case 1: When $n=7$, since $i, j, k, f, t \neq 1$ or 2 , then $3 \leq$ $i, j, k, f, t \leq 7$. The vertex x^{6} is not adjacent to x^{3} or x^{4}. Hence, x^{6} is adjacent to x^{5} and x^{7}. Now there are two vertices left, which are x^{3} and x^{4}. However, x^{3} is not adjacent to x^{4}. Therefore, it is impossible to find a pentagon $x^{i}-x^{i}-x^{k}-x^{t}-x^{t}-x^{i}$.
Case 2: When $n<7$, since $i, j, k, f, t \neq 1$ or 2 , then there are only four vertices or less. However, to create a pentagon, we need five different vertices.
Lastly, we have the following result:

2.26. Theorem:

The graph $\Gamma\left(V S_{M n}\right)$ is a coprime graph.
Proof: Recall from definition of $\Gamma\left(\mathrm{VS}_{\mathrm{Mn}_{n}}\right)$ that for any pair of vertices, $x^{i}, x^{j} ; x^{i} x^{j} \in \mathrm{E}\left(\Gamma\left(V S_{M n}\right)\right)$ only if $i+j>n$ and $\operatorname{gcd}(i, j)=1$. Combining definitions of $\Gamma\left(V S_{M n}\right)$ and coprime labeling gives the desired result.

Bios

Bana Jawid Al Subaiei

Department of Mathematics and Statistics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia, O0966500816416,
banajawid@kfu.edu.sa
Assistant professor at the department of mathematics and statistics, College of Science, King Faisal University. Vice dean of female affairs in the preparatory year deanship from 1438 H until now. She got her PhD and master's degrees from the University of Southampton, United Kingdom. She has published papers in the ISI journal. She has joined many committees at the department level, college level and university level, such as the main committee of scientific chairs. Orcid ID: 0000-0001-6279-4959

Abolape Deborah Akwu

Department of Mathematics and Statistics, College of Science, King Faisal University, A/Ahsa, Saudi Arabia, 00966567154625, aakwu@kfu.edu.sa
Researcher and assistant professor at department of mathematics and statistics, College of Science, King Faisal University. She got her PhD and master's degrees from the University of Ibadan, Ibadan, Nigeria and she has an unusual commitment to both teaching and quality research whereby she has done research on some aspects of graph theory and algebra. Additionally, she has published articles in journals that are index in Scopus. ORCID ID: 0000-0002-4665-5040

References

Beck, I. (1988). Coloring of a Commutative Ring. J. Algebra, 116(1), 20826.

Berge, C. (1962). The Theory of Graphs and Its Applications. NY, NY: Wiley. Translated by Alison Doig.

Das, K. Ch., Akgunes, N. and Cevik, A. S. (2013). On a graph of monogenic semigroups. Journal of Inequalities and Applications, n/a(44), n/a.
DeMeyer, F.R., McKenzie, T., Schneider, K. (2002). The zero-divisor graph of a commutative semigroups. Semigroup Forum, 65(2), 206-14.
DeMeyer, F.R. and DeMeyer, L. (2005). The zero-divisor graphs of semigroups. Journal of Algebra, 283(1), 190-8.
DeMeyer, L., Greve, L., Sabbaghi, A. and Wang, J. (2010). The zero-divisor graph associated to semigroups. Communications in Algebra, 38(9), 3370-91.
Lovasz, L. (1972). Normal hypergraphs and the weak perfect graph conjecture. Discrete Math., 2, 253-267.
Wright, S.E. (2007). Lengths of paths and cycles in zero-divisor graphs and digraphs of semi-groups. Communications in Algebra, 35(6), 1987-91.

