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ABSTRACT

Jaadl|

The undirected graph I'(VSy,,) is the zero-divisor graph of the monogenic
semigroup Sy, with zero. The non-zero vertices X' and X/ of this graph are
adjacent wheneveri+j>nandgcd(i,j) = 1, wherenis the order of
T(VSpn). In this work, we consider some properties of the graph T'(V.Sy;,,),
such as the diameter, girth, chromatic number and clique. In addition, we
show that ['(V Sy, ) is a perfect, well-covered and coprime graph.
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1. Introduction

Zero-divisor graphs were first considered in commutative rings by
Beck (1988). This subject was later applied to semigroups by
DeMeyer er al (2002), and it was then expanded by many
researchers (for example, see DeMeyer et al (2005) and Wright
[2007]).

The literature on zero-divisor graphs of semigroups discusses many
classifications of semigroups, such as commutative semigroups and
monogenic semigroups. The zero-divisor graphs of monogenic
semigroups were studied by Das er a/ (2013). This particular work
will continue this investigation.

The zero-divisor graphI'(S) for a commutative semigroup S with
{0} is an undirected graph whose vertices are the zero-divisor of
(DeMeyer er al, 2002). In other words, the two vertices x and y in
Z(S) are adjacent when xy = 0, where Z(S) is the set of zero-
divisors. In Das er a/ (2013), the zero-divisor graph I'(S)) for a
monogenic semigroup Sy with {0} is defined as an undirected graph
whose nonzero vertices X', X € Sy, are adjacent if they satisfy the
following:

xxl=0onlyifi+j > n

where 1 < i,j < n. In this work, we add one more condition to the
graph obtained in Das er a/ (2013) to obtain a new zero-divisors

monogenic semigroup graph, and its characteristics will be studied.
We will use the same notation as Das er a/. (2013).

A semigroup is a set with associative binary operation. When a
semigroup is generated by one element, it is called a monogenic
semigroup. When S'is a semigroup with {0}, the elements € Sis
called a zero-divisorif there is an element t € S that satisfies 5.t =
0=s #0ort # 0. Usually, the set of zero-divisors is denoted by
Z(S). Consider the monogenic semigroup Sas such thatSy =
{x, x% ..., x"} with {0} is defined as follows:

xxI=x"=0onlyifi +j >nandged(i,j) =1. (1)

wherex' andx! €Sy and1 < i,j < n. We will call this zero-
divisors monogenic semigroup the variation monogenic sem{group,
as denoted byVSyy,, wherenis the order of VSy,. VSy, is a
semigroup. The undirected graph T'(V'Sy,) on the n vertices is a
graph whose nonzero zero-divisors vertices x', x' € V.S, are only

adjacent if the rule in (1) holds. If vertices x' and x/ are adjacent,
then we write x' X € E(T'(VSy,)), and we call it the edge set of T
(VSmn)- The vertex set of T'(V Syy,) will be denoted by V (T'(V Syy,)).
DeMeyer et a/. (2002) denote the set of vertices, which are adjacent
tox', by ann (x)).

1.1. Example:

Consider'(VSys), wheren = 5. The vertex set V(I'(VSys)) =
{x, x% x3,x*, x°}, and the graph is given in Figure 1 below:

Figure 1. The graph T (VSys)

5
.x-

ann(x") = {x°}, ann(x? = {x*,x°), and ann(x°) =

{x", 2% %3, x4,

1.2. Example:
When considering I'(V'Sy) given in Figure 2 below, the vertex set
V(C(VSye)) = {x, %%, %, x*, x°, x°}.

Figure 2. The graph F(VSMG)

ox?

15. - .xé

ann(x1) = {x6}, ann(x3) = {x*,x5}, and ann(x>) =
{x2, x3, x4, x6

The diameter of a graph G, as denoted by diam(G), is defined as
follows:

diam(G) = max{d;(x,y): x,y € V(G)}.
where d;; is the distance between two vertices. By the distance, we
mean the shortest path between two vertices. So, the diameter is the
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greatest distance between two vertices in the graph. However, the
radius is the smallest distance between two vertices in the graph.
The radius of a graph G, as denoted by rad(G), is given as follows:

rad(G) = min{dG (,y):xyE€ V(G)}.
When there is no confusion about the graph in question G, we use
d(x,y) instead ofd;(x,y) to represent the distance between x
andyinG.

The girth of a graph is defined as the length of the shortest cycle in
the graph. For any vertex x in G, the number of vertices that are
adjacent to x is called the degree of the vertex x and is denoted by
degg(x). Then, degg(x) = |ann(x)|. The maximum degree for G is
denoted by A(G), which refers to the largest vertex's degree in G.
The minimum degree for'(G)is denoted by 8(G), which is the
smallest vertex's degree in G. The non-increasing sequence of the
vertices’ degrees of graph G is called the degree sequence of G and
denoted by DS(G). The irregularity index of graph G is defined as
the number of different terms in DS(G) and denoted by MWB(G),
asin Das eral (2013).

When considering the graphGand a subsetD of V(G),Dis a
dominating set for graph G if each vertex of V(G) is adjacent to at
least one vertex of D. The number of vertices of the smallest
dominating set is called the domination number and denoted by
Y(G).

The coloring of graph G is an assignment of colors to vertices of G so
that no two adjacent vertices are assigned the same color. The
minimum number of colors is called the chromatic number of G and
is denoted by x (G). A coprime labelling of a graph G of ordern is a
labeling of the vertices of G with distinct integers 1,2, ..., 7, so that
the labels on any two adjacent vertices are relatively prime. Any
graph that admits coprime labelling is known as a coprime graph. If
a subgraph of graph Gis a complete graph, then this subgraph is
called a cligue. The number of vertices in the maximum clique (no
other clique with more vertices) of G is called the cligue numberand
denoted by w(G). As stated by Lovasz (1972), graph Gis a perfect
graph if w(G) = x (G).

The independent ser of graph G is a set of vertices in G that satisfies
that no two vertices are adjacent in the set. The independent
number, which is denoted by a(G), is the cardinality of a maximum
independent set in G. A graph G is said to be a we/l-covered graph
when all its maximal independent sets are maximum.

In the next section, we give the characteristics of a variation
monogenic semigroup.

2. Results

In this section, some properties of the graph T'(VSyy,) are
investigated, such as girth, diameter, maximum degree, minimum
degree, degree sequence, domination number, clique number,
chromatic number, independent set, well-covered and coprime
graph.

The next result gives the diameter of I'(VSyy,).

2.1. Theorem:

When VS, is a variation monogenic semigroup, the diameter of
T'(VS\.,) is as follows:

ILn=2
diaml'(VSy,) = {2,n > 2 and prime
3,if otherwise
Proof: First, when we consider the graph I'(VSy;,,) withn = 2,1t is

obvious that the greatest path in I'(VSy,,) is 1, which provides the
diameter of the graph. Next, we split the remaining problem into the
following two cases:

Case 1: whennis a prime number. The vertex x™ is adjacent to all
the vertices in I'(VSy,) since the ged (i,j) = landn + i > n, for
every vertex X' in [(VSy,,), where i < n. Hence, the result follows
from Theorem 1 in Das eral. (2013).

Case 2: when 1 is not a prime number. When there are the vertices
x',x),x" inT(VSypn) so that x* and x/ are not adjacent,
ged (n,j) # 1and ged (i,n) = ged (r,n) = ged (j,7) = 1, where
1< j,r<nandl <i<mn. Vertexx'is adjacent to only vertex x"
or x"" sincei +n>nand gcd (i,n) =1. The diamater of
['(VSyy) can be viewed as the distance between vertex x' and
vertex x . This is x ' —x" —x" —x1 , which gives
diam(I'(VSyy)) = 3, asrequired.

2.2. Theorem:

Let VSy, be a variation monogenic semigroup. Then,
rad(T(VSy,)) = 1.

The proof is straightforward since the vertex x is adjacent to vertex
x"only.

2.3. Theorem:

When VS, is a variation monogenic semigroup, the girth of
T(VSy,) is 3 forn > 4.

Proof: Let p denote the highest prime number that is less or equal to
n. The definition of ['(VSy;,) shows that xP xP' = 0 and xP" xP? =
0. Additionally, we have xP x?> = 0 for 2(p — 1) > n. Therefore,
we have xP—xP"'—xP? —xP. Therefore, the girth is 3 forn > 4.

Forn < 4, xP" xP? # 0 since 2p — 3 is not greater than n.
Therefore, xP'x?? & E (T'(VSyy,)) which implies that there is no
cycle xP—xP1—xP2—xP forn < 4. Hence, the girth does not exist
forn < 4.

2.4. Theorem:

When p is the highest prime number that is less or equal to 7, then for
any variation monogenic semigroup V Sy, the maximum degree and
minimum degree  of I'(VSy,,) are A(T'(VSy,)) =p —1and
SCWVSyn)) =1.

Proof: Forp = n, the result follows from Das er a/ (2013). When
we assume thatp # n, vertexxP has the maximum degree.
Therefore, x?x' = 0if p +i > nandged (p,i) = 1. This implies
that xPx' =0 for all i>n—p, that isn—p<i<n.
Furthermore, deg (x?) = |i|, where |i|=(n—(n—p))—1=
p—1 (xPxP & E(T(VSyn)) since I (VSpyy) is a simple graph).
Hence, the maximum degreeisp — 1.

Additionally, by definition of I'(VSyy,), x is adjacent to only x".
Therefore, the minimum degree is 1.

2.5. Corollary:

[ann(xP)| = p — 1, wherepis the highest prime number that is
less or equal to 7.

2.6. Example:

Consider the graph T ( VSyg ) with the vertex set
{o, x% %3, %%, x°, x°, x7, x% given in Figure 3.

Figure 3. The graph T (VS y18)

Xe ox?
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This graph has a diam(T'(VSyg)) = 3, rad(T(VSyg)) = 1,
girth(T(VSyg)) =3,

2.7.Theorem:

For any positive integer ofn,iandr withl < i < n,letK; =
{rimn—i <r <nandged (i,r) = 1}and m; = |K,|, then
the degree sequence of the graph I'(VSy,,) = my, my, ..., m,.

The proof follows directly from the definition of I'(V Syy,). Below is
an example that illustrates the result.

2.8. Example:

Consider the graph T' ( VSyg ) with the vertex set
{x, x% X3, x4, x5, xs}. Let K; be the degree of vertex x', where x' €
V(T (VSye). Then, |[Ki|=|{6}| = 1, |K,| = |{5}| =
K:| =145} =2, |K.| =135} =2,1K:s]|=
1£2,3,4,6}] = 4, and |Ks| = |{1,5}] = 2. Therefore, the
degree sequence of ['(VSy6) = 1,1,2,2,2,4.

2.9. Remark:

Let C* denote the set of prime numbers that are less or equal to n.
The irregularity index of [(V'Sy,) is given as |C¥|.

2.10. Definition:

Let p be the greatest prime number that is less thann, and let C
denote the class of x'so thatn + i >nandged (i,n) # 1forl <
i < n—p. Additionally, let Q denote the class of vertices x* so
that x* & C where k is primeand1 < k < n—p.

Note that if Cis empty then Q is empty.

2.11. Theorem:

For the positive integer 1,

1,nis prime
_ 2,C,Q are empty
YV Syn) = {3, C is not empty and Q is empty
4,C,Q are empty

Proof: We split the problem into the following four cases:
Case 1: When nis prime,

nis relatively prime to i, wherei = 1,2,..,n—1.WhenD cV
(F(VSMn)), it follows from the definition of ['(V.Sy,,) thatx"x'€
E (T(VSyp)) for alli. Hence, D = {x"}is the dominating set of
['(V Spym) with cardinality one whenever n is prime.

Case 2: When C and Q are empty, it follows from the definition of C
that there isiforl < i < n —pso that ged (i,n) = 1since C
is empty. When D = {x",x"} € V(['(VSyn)), we havex" x' € E
(CWSyn) for allx',1 < i < n—p, which follows from the
definition of I'(VSy,). Additionally, sincep is the greatest prime
number that is less or equal to n, we have xP x' € E (I'(VSyy,)) for
all x', wheren —p+1 < t < n. Therefore, D = {x",xP}is the
dominating set with cardinality 2.

Case 3: When C is not empty and Q is empty. Since C is not empty,
it follows that there is1 < i,j < n—pso thatged (n,i) = 1
and ged (n, j) # 1. Also, there is a vertex x" so that gcd (7,j) =

andp < r < n.letD = {x",x",xP} € V(I'(VSy,)) andr +
Jj > n.Then, itis sufficient to show that D is the dominating set for
T'(VSyn)- Consider the set of vertices {x'}so thatn —p+1 <
t < n. The set of vertices x' is adjacent to vertex xP sincep is
prime andt +p > n. Next, consider the set of vertices x'e C,
wherel < i < n —p. Itfollows thatx" is adjacent to all x' since
ged (n, i) = landn + i > n. Lastly, consider the set of vertices
{x} € C,wherel < j < n—p. Vertexx" is adjacent to all {x}

sinceged (r,j) =1andr+j > n. Hence,D = {x",x",xP}is
the domnating set with cardinality 3.

Case 4: When C and D are notempty. Let D = D" U D" where D' is
the dominating set of ['(VSy,,) when C is not empty and D"’ is the
dominating set for the class Q. It follows from case 3 above that
[D'| = 3. Letl < i,k,q < n—pso thatged (n,i) # 1and
ged(n,q) # 1.Notethatq = ki where k is a prime number with
x“¢ C.Next, consider the class Q containg the set of vertices x =
x4 Sinceged (n,i) # 1, it follows from the definition of
I'(VSyn) that ged (n,q) # 1, which implies that x" x9 &
E(I'(VSyn)). Also,x9xP & E(I'(VSyy))sincep +q < n. By
case 3 above and from the definition of class C, we have
ged (r,i) =1and ged(r,k) #1forp+ 1 < r < n, which
implies that gcd (7r,q) # 1and sox"x% & E(I'(VSyn)).
Therefore, there is {x*}forp < s < nso that D" = {x°},
where s +q > nand gcd(s,q) =1. Hence,D = D' U D" =
{x"x",xP} U { x°}is the dominating set with cardinality 4.

2.12. Example:

Consider the graphs I'(V'Spy9) and I'(VSy1). The class C and Q are
empty in the case of I'(VSy9). Additionally, class C is not empty and
Qis empty in the case of ['(VSy1g). Therefore,y (I'(VSys)) =
[{x, x°}| = 2andy T(VSy10)) = [{x',x° x"}| = 3.

2.13. Definition:

For the positive integern, letw(n) = { p;, P2, ... , P} be the set of
consecutive prime numbers that is less or equal to 1 that satisfies

P. + Dus > n. The total number of elements in m(n) is denoted by
" (n) =| ()|

2.14. Definition:

Letr(n) be given as in Definition 2.12. Define sy as the positive
integers E] < sf < nsothatthe following happens:

1) sf & m(n)

2)ged (sf,p) = 1forallp; € m (n)

3) ged (sf,s7) = 1 for any pair [g] <sf,si<n
The number of s7 is defined as S* = |

2.15. Theorem:

Let VSyy, be a variation monogenic semigroup. The chromatic
number of T(V Sy,) is given asw*(n) + S".

Proof: Note thatxPf xPt € E(T'(VSyy,)) for anyp,p,€ m (n).
Therefore, we need m*(n) distinct colors to color all the vertices
xPfwherep€ m (n). Let color C, be assigned to vertex xP1, where
p1 € (), then it is obvious thatx” xP1 & E ([(VSyy,)) for 7 prime
andr & i (n). This implies that color C; can be assigned to all
vertices X".

Next, consider the set of vertlces xsf s0 thatx $ T (n), E] <
st < n. For any pair Sf , 5] ,xf x* €E (I'(VSyn)) and

xPrxSrt EE (T(VSpmn)), which follows from the definition ofsf*
and I'(V Syn)- There is a need of an additional S* colors to color the
set of vertices {xsf*} Furthermore, the set of vertices {x"'}, where
1 < m < n, can be assigned the same color that was assigned to
vertex {x '} if ged (m, s #E L

Lastly, vertex x can be assigned any color that was assigned to the
vertices of the graph, provided that the color is different from the
color that was assigned to vertex x™. Hence, the total number of
colors needed to color the graph T'(V Syp,) is ™ (n) +S™.

2.16. Theorem:

When V Sy, is a variation monogenic semigroup, the clique number
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of T(VSyy) is given as () + S™.

Proof: Note that all the vertices xPi, p; € 1(n) are adjacent to each
other, which follows from the definition of (r7) and T'(V Sy;,,). Next,
consider the set of vertices { X/ } where E] < s < nltis clear
that xPix*f € E(T(V Syp)) since ged (pi, S¢™) = 1. In addition, let
{x'} be the set of vertices in['(VSyy)so thatl < t < p; and
p1 € m(n). It is obvious thatx'xPt & AT'(VSyy,)) sincet +p; <
n. Also, for the pairs of vertices x5, x50 x5 x5 € ATV Sym))
since ged (s¢*,5,") = lands;™ + s;" > n, which follows from
the definition s¢*. Hence, the clique number of ['(VSy,) is given as
m*(n) + S*.

2.17. Remark:

The graphT'(VSy,) is a perfect graph since y (I(VSyy)) =
(CVSyp)) = m*(n) +S™.

2.18. Example:

For the graph I'(V'S)y7), we have(7) = {3,5,7}and som*(7) =
3. Also,S* = 0. Then, y(T(vsw)) =" (7)+S*= 34+ 0 =3 =w
TV Sy
For the graph I'(VSyg), we have m(8) = {5,7}andsom*(8) = 2.
Moreover, S*= 1. Then, y(['(VSws)) =7*(8)+S*= 2+1=3 =
o TV Sys).

Figure 4. The graph T' (VS 1) and T' (VS 3y7)

Xe o2

e ex e

For ['(VSy7), the minimum number of colors is three, and they are
C; = {(x7},C,= {x°,x*,x}and C;= {x°,x*,x°}. The complete
subgraphs (cligues) from T'(VSy;) are {x°,x°,x7}. Hence,
w([(VSy7)) = 3.

For " (VSyg), the minimum number of colors is three, which are C,
={& X5 X A, C= {x7,x}and C5= {x°,x°}. The complete
subgraphs (cligues) from I'(VSyg) are {x°,x°,x7}. Hence,
w((VSyg)) = 3.

2.19. Lemma:

Let V Sy, be a variation monogenic semigroup, then a(I'(VSy;,)) =
n

2
Proof: We know thatg < [E] Forall 1 _</}/_<E], itis clearthati+;<
n.Hence, Xis not adjacent with x7. Therefore, a(T(V Sy)) > E]
2.20. Remark
Let 17 be a positive integer. Define z¢* as the positive integers where
E] <zf" < nso that the following happens:
1) z¢™ is not prime
2) ged (26", hy) # 1, or when ged (27", by, ) = 1, then zp* + h,, <
nforall1<h, < E]
The number of z;™ is defined as Z* = | z¢* |. Hence, a(T'(VSyy)) =

[

2.21.Theorem:
The graph I'(V Spy,) is a well-covered graph.

Proof: We need to show that all maximal independent sets

a(T'(VSym)) given in Remark 2.19 are maximum.

Next, foer* and A, , as defined in Remark 2.19, suppose there is a
vertex X2 x%, where x*€ V(I' (VSyy,)) and c*> IPE] Additionally,
letx™, x"€ aT(VSyy)) for some maximal independent sets
a{T(VSwn) in T(VSym). Note thatged (¢*, hy) =1 and c* hy, > n
since X% x%, which follows on from Remark 2.19. This implies
that X" x" € E(T(VSyy)), which contradicts the assumption that
a*(T(VSpm)) is a maximal independent set. Therefore, X = X7
which means that every maximal independent set is maximum in
a(T(VSyn))- Hence, a(T'(V Syy,)) is a well-covered graph.

2.22. Proposition:

Letw(n) = {p1, P2, ..., Pi} be the set of consecutive prime numbers
that are less or equal to 7750 thatpy + peiq > 1. In graph T (VSy),
we have the following:

i) If i, j € (n), then there is a cycle of length 3 that contains X’ and
x/.

i) Ifi,j & m(n), andi,j# 1,2 are prime numbers, then there is a
cycle of length 4 that contains x'and x/.

Proof: i) Sincei,j € m(n), theni+j > nandged (i,j) = 1.
Hence, Xis adjacentto x7. Now there are two cases as follows:

a)lfi < j,takek = n—1i+ 6 where0<6 < n 6§ guarantees that
k # i,j. Sincejis prime andk # j, thengcd (k,j) = 1. Also,
k+j=n—i+684j>nsincei < j. Therefore,x is adjacent
to x*. Moreover, since /is prime and k # i, then gcd (k, i) = 1.
Also,k+i =n—i+6+i =n+6> n.Then,xkisadjacent
to X. Therefore,x' — xi— x*—x' is a cycle of length 3, which
contains x' and x/.

b)Ifj <i.Takek = n —j + &', where 0< 8" < n. 6" guarantees that
k # i,j. The result uses the same arguments in case (a) above.

i) Since 1, j are prime numbers and neither of them are in 71(), then
i # < n. Hence, X is not adjacent to xJ. This means that it is
impossible to find a cycle of length 3 that contains X and x7. Also,
i,j < nandi,j < n—1sincei,jare not inm(n). Then, since
i,j # 1,2we have thati+n > n,i +(n—1) > n,j+n >
n,j + (m—1) > n Therefore,x’— x"— x/- x"7 — x'is a cycle
of length 4 that contains x’and x’.

2.23. Theorem:

Letx’— %/~ x”be a path of length 3in T (VSpyy). If i = 1 or 2, then
lann(¥) N ann (x%)| = 1.

Proof: We have split the problem into the following two cases:

Case 1: Wheni=1. Recall that ann (x') = x™ and xx™ €
E(T'(VSyz)), which follows from the definition of ['(VSyy,).
Therefore, we have j = n, which implies that x™x? € E (T(VSy)),
then x™ € ann (x?). Therefore, x™ € ann (x¥) N ann (x?). Hence,
lann(x) N ann(x?)| = 1since |ann(x)| = {x} = 1.

Case 2: Wheni = 2. If nis odd, then x” is adjacent to x” and not
adjacent to x”. Hence, the result follows from case 1 above. If nis
even, then x? x™" € E(T(V Syz)), which follows from the definition
of [(VSym). Therefore, x> x™' € E(T(V Spy,)), which implies thatj =
n—1. Also, for x/x? € E(T (VSyn )., j +2z > n and
ged (j,z) = 1. This is true sincen—1 +z > nforz > 1.
Therefore, x ' € ann(x?). That is, x™' € ann(x¥) N ann (xX).
Hence, |ann(x) N ann (x| = 1since [ann(x)| = {x"} = 1.

From Proposition 2.21 and Theorem 2.22, the following can be

deduced:
2.24. Corollary:

Acyclein [(V Syy,) cannot contain vertex x/, where i = 1 or 2.
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2.25. Corollary:

In T(VSpn), we have the following:

1) ann(xl) = xn,

x™,nis odd
2) ann(x*) = {x"_l nis even
2.25. Proposition:

A pentagon x' —x/—x*—x"—x'—x" cannot be in I'(VSyn)
whenevern < 8.

Proof: We will prove this using a contradiction argument. Suppose
there is a pentagon xX'—x/—x*—x"—x"—x" whenn < 8. From
Corollary 2.24, we geti,j, k,f,t # 1 or 2. Now we have the
following two cases:

Case 1: Whenn=7, since i,j,k,f,t#1or2, then3 <
i,j,k,f,t < 7.The vertex x° is not adjacent to X or x*. Hence, X°
is adjacent to x and X’. Now there are two vertices left, which are X°
and x*. However, X’is not adjacent to x*. Therefore, it is impossible
to find a pentagon X'—x/—x*—x"—x'—x".

Case 2:Whenn < 7,since i, j, k, f,t # 1 or 2, then there are only
four vertices or less. However, to create a pentagon, we need five
different vertices.

Lastly, we have the following result:

2.26. Theorem:

The graph I'(V Syy,) is a coprime graph.

Proof: Recall from definition of I'(VSy,,) that for any pair of vertices,
x', x5 x" %/ € E(T(VSyy)) only ifi+j>nand ged (i,)) =1.
Combining definitions of ['(VSy,) and coprime labeling gives the
desired result.
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