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 الملخص 
بياني لشبه زمره دائرية    𝑉𝑆𝑀𝑛(Γ(الغير الموجه  الرسم البياني     ذو قواسم   MSهو رسم 

الصفرية    صفريه الغير  الرؤوس  محايد.  أنها   𝑥jو   𝑥iمع  عنها  يقال  البياني  الرسم  لهذا 
حققت إذا  ,gcd (𝑖 و𝑖 + 𝑗 > 𝑛 مرتبطة  𝑗) =1  العدد أن  عناصر  𝑛حيث  عدد  يمثل 

البياني   البياني  Γ(𝑉𝑆𝑀𝑛)الرسم  الرسم  هذا  خصائص  دراسة  تم  البحث  هذا  في   .Γ 
(𝑉𝑆𝑀𝑛)  و مقاس المحيط القطر  العصب. وجد    و  مثل  عدد  و  اللوني  الرسم  العدد  أن 

 .و مغطى جيدا و أولي نسبي بيان كامل Γ(𝑉𝑆𝑀𝑛) البياني

 

ABSTRACT 
 

The undirected graph Γ(𝑉𝑆𝑀𝑛) is the zero-divisor graph of the monogenic 
semigroup SM with zero. The non-zero vertices 𝑥i and 𝑥j of this graph are 
adjacent whenever 𝑖 + 𝑗 > 𝑛 and gcd(𝑖, 𝑗) = 1, where 𝑛 is the order of 
Γ(𝑉𝑆𝑀𝑛). In this work, we consider some properties of the graph Γ(𝑉𝑆𝑀𝑛), 
such as the diameter, girth, chromatic number and clique. In addition, we 
show that Γ(𝑉𝑆𝑀𝑛) is a perfect, well-covered and coprime graph. 

 

1. Introduction 
Zero-divisor graphs were first considered in commutative rings by 
Beck (1988). This subject was later applied to semigroups by 
DeMeyer et al. (2002), and it was then expanded by many 
researchers (for example, see DeMeyer et al. (2005) and Wright 
[2007]). 
The literature on zero-divisor graphs of semigroups discusses many 
classifications of semigroups, such as commutative semigroups and 
monogenic semigroups. The zero-divisor graphs of monogenic 
semigroups were studied by Das et al. (2013). This particular work 
will continue this investigation. 
The zero-divisor graph Γ(𝑆) for a commutative semigroup 𝑆 with 
{0} is an undirected graph whose vertices are the zero-divisor of 𝑆 
(DeMeyer et al., 2002). In other words, the two vertices 𝑥 and 𝑦 in 
𝑍(𝑆) are adjacent when 𝑥𝑦 = 0, where 𝑍(𝑆) is the set of zero-
divisors. In Das et al. (2013), the zero-divisor graph Γ(𝑆𝑀) for a 
monogenic semigroup 𝑆𝑀 with {0} is defined as an undirected graph 
whose nonzero vertices 𝑥i, 𝑥j ∈ 𝑆𝑀 are adjacent if they satisfy the 
following: 
𝑥i.𝑥j = 0 only if 𝑖 + 𝑗 >  𝑛 
where 1 ≤ 𝑖, 𝑗 ≤ 𝑛. In this work, we add one more condition to the 
graph obtained in Das et al. (2013) to obtain a new zero-divisors 
monogenic semigroup graph, and its characteristics will be studied. 
We will use the same notation as Das et al. (2013).  
A semigroup is a set with associative binary operation. When a 
semigroup is generated by one element, it is called a monogenic 
semigroup. When 𝑆 is a semigroup with {0}, the element 𝑠 ∈ 𝑆 is 
called a zero-divisor if there is an element 𝑡 ∈ 𝑆 that satisfies 𝑠. 𝑡 =
0 ⇒ 𝑠 ≠ 0 or 𝑡 ≠ 0. Usually, the set of zero-divisors is denoted by 
𝑍(𝑆). Consider the monogenic semigroup 𝑆 as such that 𝑆𝑀 = 
{𝑥, 𝑥2, … , 𝑥n} with {0} is defined as follows: 
𝑥i.𝑥j = 𝑥i+j = 0 only if 𝑖 + 𝑗 > 𝑛 and gcd(𝑖, 𝑗) = 1.   (1) 

where 𝑥i and 𝑥j ∈ 𝑆𝑀 and 1 ≤  𝑖, 𝑗 ≤  𝑛 . We will call this zero-
divisors monogenic semigroup the variation monogenic semigroup, 
as denoted by 𝑉𝑆𝑀𝑛, where 𝑛 is the order of 𝑉𝑆𝑀𝑛. 𝑉𝑆Mn is a 
semigroup. The undirected graph Γ(𝑉𝑆𝑀𝑛) on the 𝑛 vertices is a 
graph whose nonzero zero-divisors vertices 𝑥i, 𝑥j ∈ 𝑉𝑆𝑀𝑛 are only 

adjacent if the rule in (1) holds. If vertices 𝑥i and 𝑥j are adjacent, 
then we write 𝑥i 𝑥j ∈ 𝐸(Γ(𝑉𝑆𝑀𝑛)), and we call it the edge set of Γ 
(𝑉𝑆Mn). The vertex set of Γ(𝑉𝑆𝑀𝑛) will be denoted by 𝑉 (Γ(𝑉𝑆𝑀𝑛)). 
DeMeyer et al. (2002) denote the set of vertices, which are adjacent 
to 𝑥i , by 𝑎𝑛𝑛 (𝑥i). 

1.1. Example: 
Consider Γ(𝑉𝑆𝑀5), where 𝑛 =  5. The vertex set 𝑉(Γ(𝑉𝑆𝑀5)) =
 {𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, and the graph is given in Figure 1 below: 

Figure 1. The graph 𝚪(𝑽𝑺𝑴𝟓) 

 

𝑎𝑛𝑛(𝑥 1) =  {𝑥 5} ,  𝑎𝑛𝑛(𝑥 3) =  {𝑥 4 , 𝑥 5}, and 𝑎𝑛𝑛(𝑥 5) =

 {𝑥1, 𝑥2, 𝑥3, 𝑥4}. 

1.2. Example: 
When considering Γ(𝑉𝑆𝑀6) given in Figure 2 below, the vertex set 
𝑉(Γ(𝑉𝑆𝑀6)) = {𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}. 

Figure 2. The graph 𝚪(𝑽𝑺𝑴𝟔) 

 
𝑎𝑛𝑛(𝑥 1) =  {𝑥 6} ,  𝑎𝑛𝑛(𝑥 3) =  {𝑥 4 , 𝑥 5}, and 𝑎𝑛𝑛(𝑥 5) =
 {𝑥2, 𝑥3, 𝑥4, 𝑥6}. 
 
The diameter of a graph G, as denoted by 𝑑𝑖𝑎𝑚(G), is defined as 
follows: 

𝑑𝑖𝑎𝑚(G) =  𝑚𝑎𝑥{𝑑𝐺(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑉(𝐺)}. 
where 𝑑𝐺  is the distance between two vertices. By the distance, we 
mean the shortest path between two vertices. So, the diameter is the 

https://doi.org/10.37575/b/sci/0016


190 
 .  الرسومات البيانيه لقواسم صفريه في شبة زمره دائرية منحرفة(. 2020. )جويعد السبيعي و أبولبي ديبروه أكوبنا 

 ( 2(، العدد )21المجلد ) ،الأساسية والتطبيقيةالمجلة العلمية لجامعة الملك فيصل، فرع العلوم 
 

 

 

 Bana Al Subaiei, Abolape Deborah Akwu. (2020). The Zero-Divisor Graphs of Variation Monogenic Semigroups. 
The Scientific Journal of King Faisal University, Basic and Applied Sciences, Volume (21), Issue (2) 

greatest distance between two vertices in the graph. However, the 
radius is the smallest distance between two vertices in the graph. 
The radius of a graph G, as denoted by 𝑟𝑎𝑑(𝐺), is given as follows: 

𝑟𝑎𝑑(𝐺) =  𝑚𝑖𝑛{𝑑𝐺 (𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑉(𝐺)}. 
When there is no confusion about the graph in question G, we use 
𝑑(𝑥, 𝑦) instead of 𝑑𝐺(𝑥, 𝑦) to represent the distance between 𝑥 
and 𝑦 in G.  
The girth of a graph is defined as the length of the shortest cycle in 
the graph. For any vertex 𝑥 in G, the number of vertices that are 
adjacent to 𝑥 is called the degree of the vertex 𝑥 and is denoted by 
𝑑𝑒𝑔𝐺 (𝑥). Then, 𝑑𝑒𝑔𝐺 (𝑥) = |𝑎𝑛𝑛(𝑥)|. The maximum degree for G is 
denoted by ∆(G), which refers to the largest vertex's degree in G. 
The minimum degree for Γ(G) is denoted by δ(G), which is the 
smallest vertex's degree in G. The non-increasing sequence of the 
vertices’ degrees of graph G is called the degree sequence of G and 
denoted by 𝐷𝑆(𝐺). The irregularity index of graph 𝐺 is defined as 
the number of different terms in 𝐷𝑆(𝐺) and denoted by 𝑀𝑊𝐵(𝐺), 
as in Das et al. (2013).  
When considering the graph G and a subset 𝐷 of 𝑉(𝐺), 𝐷 is a 
dominating set for graph G if each vertex of 𝑉(𝐺) is adjacent to at 
least one vertex of 𝐷. The number of vertices of the smallest 
dominating set is called the domination number and denoted by 
γ(G). 

The coloring of graph G is an assignment of colors to vertices of G so 
that no two adjacent vertices are assigned the same color. The 
minimum number of colors is called the chromatic number of G and 
is denoted by 𝜒 (G). A coprime labelling of a graph 𝐺 of order 𝑛 is a 
labeling of the vertices of G with distinct integers 1,2, … , 𝑛, so that 
the labels on any two adjacent vertices are relatively prime. Any 
graph that admits coprime labelling is known as a coprime graph. If 
a subgraph of graph G is a complete graph, then this subgraph is 
called a clique. The number of vertices in the maximum clique (no 
other clique with more vertices) of G is called the clique number and 
denoted by 𝜔(G). As stated by Lovasz (1972), graph G is a perfect 
graph if 𝜔(G) = 𝜒 (G). 
The independent set of graph G is a set of vertices in G that satisfies 
that no two vertices are adjacent in the set. The independent 
number, which is denoted by 𝛼(G), is the cardinality of a maximum 
independent set in G. A graph G is said to be a well-covered graph 
when all its maximal independent sets are maximum. 
In the next section, we give the characteristics of a variation 
monogenic semigroup. 

2. Results 

In this section, some properties of the graph Γ(𝑉𝑆𝑀𝑛) are 
investigated, such as girth, diameter, maximum degree, minimum 
degree, degree sequence, domination number, clique number, 
chromatic number, independent set, well-covered and coprime 
graph. 
The next result gives the diameter of Γ(𝑉𝑆𝑀𝑛). 

2.1. Theorem: 
When 𝑉𝑆𝑀𝑛 is a variation monogenic semigroup, the diameter of 
Γ(𝑉𝑆Mn) is as follows: 

𝑑𝑖𝑎𝑚Γ(𝑉𝑆𝑀𝑛) = {

1, 𝑛 = 2
2, 𝑛 > 2 𝑎𝑛𝑑 𝑝𝑟𝑖𝑚𝑒

3, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Proof: First, when we consider the graph Γ(𝑉𝑆𝑀𝑛) with 𝑛 = 2, It is 
obvious that the greatest path in Γ(𝑉𝑆𝑀𝑛) is 1, which provides the 
diameter of the graph. Next, we split the remaining problem into the 
following two cases: 

Case 1: when 𝑛 is a prime number. The vertex 𝑥𝑛 is adjacent to all 
the vertices in Γ(𝑉𝑆𝑀𝑛) since the gcd (𝑖, 𝑗) = 1 and 𝑛 + 𝑖 > 𝑛, for 
every vertex 𝑥i in Γ(𝑉𝑆𝑀𝑛), where 𝑖 < 𝑛. Hence, the result follows 
from Theorem 1 in Das et al. (2013). 
Case 2: when 𝑛 is not a prime number. When there are the vertices 
𝑥 i , 𝑥 j , 𝑥 r in Γ ( 𝑉𝑆𝑀𝑛 ) so that 𝑥𝑖  and 𝑥𝑗  are not adjacent, 
gcd (𝑛, 𝑗) ≠  1 and gcd (𝑖, 𝑛) = gcd (𝑟, 𝑛) = gcd (𝑗, 𝑟) = 1, where 
1 <  𝑗, 𝑟 < 𝑛 and 1 ≤ 𝑖 < 𝑛. Vertex 𝑥i is adjacent to only vertex 𝑥n 
or 𝑥 n-1 since 𝑖 + 𝑛 > 𝑛  and gcd (𝑖, 𝑛) = 1 . The diamater of 
Γ(𝑉𝑆𝑀𝑛) can be viewed as the distance between vertex 𝑥i and 
vertex 𝑥 j. This is 𝑥 i  − 𝑥 n − 𝑥 r − 𝑥 j , which gives 
𝑑𝑖𝑎𝑚(Γ(𝑉𝑆𝑀𝑛)) = 3, as required. 

2.2. Theorem: 
Let 𝑉𝑆𝑀𝑛  be a variation monogenic semigroup. Then, 
𝑟𝑎𝑑(Γ(𝑉𝑆𝑀𝑛)) =  1. 
The proof is straightforward since the vertex 𝑥 is adjacent to vertex 
𝑥n only.  

2.3. Theorem: 
 When 𝑉𝑆𝑀𝑛 is a variation monogenic semigroup, the girth of 
Γ(𝑉𝑆Mn) is 3 for 𝑛 > 4. 
Proof: Let 𝑝 denote the highest prime number that is less or equal to 
𝑛. The definition of Γ(𝑉𝑆𝑀𝑛) shows that 𝑥p 𝑥p-1 = 0 and 𝑥p-1 𝑥p-2 =
0. Additionally, we have 𝑥p 𝑥p-2 = 0 for 2(𝑝 − 1) > 𝑛. Therefore, 
we have 𝑥p−𝑥p-1−𝑥p-2 −𝑥p. Therefore, the girth is 3 for 𝑛 > 4. 
For 𝑛 ≤  4 , 𝑥 p-1 𝑥 p-2 ≠ 0  since 2𝑝 − 3  is not greater than 𝑛 . 
Therefore, 𝑥p-1𝑥p-2 ∉ 𝐸(Γ(𝑉𝑆𝑀𝑛)) ,which implies that there is no 
cycle 𝑥p−𝑥p-1−𝑥p-2−𝑥p for 𝑛 ≤  4. Hence, the girth does not exist 
for 𝑛 ≤  4. 

2.4. Theorem: 
 When 𝑝 is the highest prime number that is less or equal to 𝑛, then for 
any variation monogenic semigroup 𝑉𝑆𝑀𝑛, the maximum degree and 
minimum degree  of Γ (𝑉𝑆𝑀𝑛 ) are Δ (Γ (𝑉𝑆𝑀𝑛)) = 𝑝 − 1  and 
𝛿(Γ(𝑉𝑆𝑀𝑛)) = 1. 
Proof: For 𝑝 = 𝑛, the result follows from Das et al. (2013). When 
we assume that 𝑝 ≠  𝑛, vertex 𝑥p has the maximum degree. 
Therefore, 𝑥p𝑥i = 0 if 𝑝 + 𝑖 > 𝑛 and gcd (𝑝, 𝑖) = 1. This implies 
that 𝑥 p 𝑥 i  = 0  for all 𝑖 > 𝑛 − 𝑝 , that is 𝑛 − 𝑝 < 𝑖 ≤  𝑛 . 
Furthermore, deg (𝑥 p) = |𝑖| , where |𝑖| = (𝑛 − (𝑛 − 𝑝)) − 1 =
𝑝 − 1 (𝑥p𝑥p ∉ 𝐸(Γ(𝑉𝑆𝑀𝑛)) since Γ(𝑉𝑆𝑀𝑛) is a simple graph). 
Hence, the maximum degree is 𝑝 − 1. 
Additionally, by definition of Γ(𝑉𝑆𝑀𝑛), 𝑥 is adjacent to only 𝑥n. 
Therefore, the minimum degree is 1. 

2.5. Corollary: 
|𝑎𝑛𝑛(𝑥p)| = 𝑝 − 1, where 𝑝 is the highest prime number that is 
less or equal to 𝑛. 

2.6. Example: 
Consider the graph Γ ( 𝑉𝑆𝑀8 ) with the vertex set 
{𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8} given in Figure 3. 

Figure 3. The graph 𝚪(𝑽𝑺𝑴𝟖) 
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This graph has a 𝑑𝑖𝑎𝑚(Γ(𝑉𝑆𝑀8)) = 3 , 𝑟𝑎𝑑(Γ(𝑉𝑆𝑀8)) =  1 , 
girth(Γ(𝑉𝑆𝑀8)) = 3, 

Δ (Γ(𝑉𝑆𝑀8)) =  6 and 𝛿(Γ(𝑉𝑆𝑀8)) = 1. 

2.7. Theorem: 
 For any positive integer of 𝑛, 𝑖 and 𝑟 with 1 ≤  𝑖 ≤  𝑛, let 𝐾i =
 {𝑟: 𝑛 − 𝑖 <  𝑟 ≤  𝑛  and gcd (𝑖, 𝑟) =  1}  and 𝑚𝑖  = |𝐾 i | , then 
the degree sequence of the graph Γ(𝑉𝑆𝑀𝑛) =  𝑚1, 𝑚2, … , 𝑚n. 
The proof follows directly from the definition of Γ(𝑉𝑆𝑀𝑛). Below is 
an example that illustrates the result. 

2.8. Example: 

Consider the graph Γ ( 𝑉𝑆𝑀6 ) with the vertex set 
{𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}. Let 𝐾i be the degree of vertex 𝑥i , where 𝑥i ∈
 𝑉 ( Γ ( 𝑉𝑆𝑀6 ). Then, |𝐾 1 | = |{6}|  =  1 , |𝐾 2 |  =  |{5}|  =  1  , 
|𝐾 3 |  =  |{4, 5}|  =  2 , |𝐾 4 |  =  |{3, 5}|  =  2 , |𝐾 5 |  =
 |{2, 3, 4, 6}|  =  4 , and |𝐾 6 |  =  |{1, 5}|  =  2  . Therefore, the 
degree sequence of Γ(𝑉𝑆𝑀6) =  1, 1, 2, 2, 2, 4.  

2.9. Remark: 
Let C* denote the set of prime numbers that are less or equal to 𝑛. 
The irregularity index of Γ(𝑉𝑆𝑀𝑛) is given as |C*|. 

2.10. Definition:  
Let 𝑝 be the greatest prime number that is less than 𝑛, and let C 
denote the class of 𝑥i so that 𝑛 + 𝑖 > 𝑛 and gcd (𝑖, 𝑛) ≠ 1 for 1 ≤
 𝑖 ≤  𝑛 − 𝑝. Additionally, let 𝑄 denote the class of vertices 𝑥ik so 
that 𝑥k ∉ C where 𝑘 is prime and 1 ≤  𝑘 ≤  𝑛 − 𝑝. 
Note that if C is empty then 𝑄 is empty. 

2.11. Theorem: 
 For the positive integer 𝑛,  

γ(Γ(𝑉𝑆𝑀𝑛) = {

1, 𝑛 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒
2, 𝐶, 𝑄 𝑎𝑟𝑒 𝑒𝑚𝑝𝑡𝑦

3, 𝐶 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝑎𝑛𝑑 𝑄 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦
4, 𝐶, 𝑄 𝑎𝑟𝑒 𝑒𝑚𝑝𝑡𝑦

 

 
Proof: We split the problem into the following four cases:  
Case 1: When 𝑛 is prime, 
𝑛 is relatively prime to 𝑖, where 𝑖 =  1, 2, … , 𝑛 − 1. When 𝐷 ⊂ 𝑉 
(Γ(𝑉𝑆𝑀𝑛)), it follows from the definition of Γ(𝑉𝑆𝑀𝑛) that 𝑥n 𝑥i ∈
 𝐸 (Γ(𝑉𝑆𝑀𝑛)) for all 𝑖. Hence, 𝐷 =  {𝑥n} is the dominating set of 
Γ(𝑉𝑆𝑀𝑛) with cardinality one whenever 𝑛 is prime. 

Case 2: When 𝐶 and 𝑄 are empty, it follows from the definition of 𝐶 
that there is 𝑖 for 1 ≤  𝑖 ≤  𝑛 − 𝑝 so that gcd (𝑖, 𝑛)  =  1 since 𝐶 
is empty. When 𝐷 = {𝑥n , 𝑥p} ⊂ 𝑉(Γ(𝑉𝑆𝑀𝑛)), we have 𝑥n 𝑥i ∈  𝐸 
(Γ(𝑉𝑆𝑀𝑛)) for all 𝑥i , 1 ≤  𝑖 ≤  𝑛 − 𝑝, which follows from the 
definition of Γ(𝑉𝑆𝑀𝑛). Additionally, since 𝑝 is the greatest prime 
number that is less or equal to 𝑛, we have 𝑥p 𝑥t ∈  𝐸 (Γ(𝑉𝑆𝑀𝑛)) for 
all 𝑥t, where 𝑛 − 𝑝 + 1 ≤  𝑡 ≤  𝑛. Therefore, 𝐷 = {𝑥n , 𝑥p} is the 
dominating set with cardinality 2. 
Case 3: When 𝐶 is not empty and 𝑄 is empty. Since 𝐶 is not empty, 
it follows that there is 1 ≤  𝑖, 𝑗 ≤  𝑛 − 𝑝 so that gcd (𝑛, 𝑖) =  1 
and gcd (𝑛, 𝑗) ≠ 1. Also, there is a vertex 𝑥r so that gcd (𝑟, 𝑗)  =  1 
and 𝑝 <  𝑟 <  𝑛. Let 𝐷 =  {𝑥 n , 𝑥 r, 𝑥p}  ⊂  𝑉(Γ(𝑉𝑆𝑀𝑛)) and 𝑟 +
𝑗 >  𝑛. Then, it is sufficient to show that 𝐷 is the dominating set for 
Γ(𝑉𝑆𝑀𝑛). Consider the set of vertices {𝑥t} so that 𝑛 − 𝑝 + 1 ≤
 𝑡 ≤  𝑛. The set of vertices 𝑥t is adjacent to vertex 𝑥p since 𝑝 is 
prime and 𝑡 + 𝑝 >  𝑛. Next, consider the set of vertices 𝑥i ∉  𝐶, 
where 1 ≤  𝑖 ≤  𝑛 − 𝑝. It follows that 𝑥n is adjacent to all 𝑥i since 
gcd (𝑛, 𝑖) = 1 and 𝑛 + 𝑖 >  𝑛. Lastly, consider the set of vertices 
{𝑥j}  ∈  𝐶, where 1 ≤  𝑗 ≤  𝑛 − 𝑝. Vertex 𝑥r is adjacent to all {𝑥j} 

since gcd (𝑟, 𝑗) = 1 and 𝑟 + 𝑗 >  𝑛. Hence, 𝐷 =  {𝑥n , 𝑥 r , 𝑥p} is 
the domnating set with cardinality 3. 
Case 4: When 𝐶 and 𝐷 are not empty. Let 𝐷 = 𝐷′ ∪ 𝐷′′ where 𝐷′ is 
the dominating set of Γ(𝑉𝑆Mn) when 𝐶 is not empty and 𝐷′′ is the 
dominating set for the class 𝑄. It follows from case 3 above that 
|𝐷′|  =  3. Let 1 ≤  𝑖, 𝑘, 𝑞 ≤  𝑛 − 𝑝 so that gcd (𝑛, 𝑖)  ≠  1 and 
gcd(𝑛, 𝑞)  ≠  1. Note that 𝑞 =  𝑘𝑖 where 𝑘 is a prime number with 
𝑥k ∉  𝐶. Next, consider the class 𝑄 containg the set of vertices 𝑥q =
 𝑥ki. Since gcd (𝑛, 𝑖)  ≠  1, it follows from the definition of 
Γ ( 𝑉𝑆𝑀𝑛 ) that gcd (𝑛, 𝑞) ≠ 1 , which implies that 𝑥 n  𝑥 q  ∉
 𝐸(𝛤(𝑉𝑆𝑀𝑛)). Also, 𝑥q 𝑥p ∉  𝐸(𝛤(𝑉𝑆𝑀𝑛)) since 𝑝 + 𝑞 ≤  𝑛. By 
case 3 above and from the definition of class 𝐶 , we have 
gcd (𝑟, 𝑖) = 1  and gcd(𝑟, 𝑘) ≠ 1  for 𝑝 +  1 ≤  𝑟 ≤  𝑛 , which 
implies that gcd ( 𝑟, 𝑞)  ≠  1  and so 𝑥 r  𝑥 q  ∉  𝐸(𝛤(𝑉𝑆𝑀𝑛)). 
Therefore, there is {𝑥 s }  for 𝑝 <  𝑠 ≤  𝑛  so that 𝐷′′ =  {𝑥𝑠},  
where  𝑠 + 𝑞 >  𝑛 and gcd(𝑠, 𝑞) = 1. Hence, 𝐷 =  𝐷′ ∪  𝐷′′ =
 { 𝑥n, 𝑥r, 𝑥p }  ∪  { 𝑥s} is the dominating set with cardinality 4. 

2.12. Example:  
Consider the graphs Γ(𝑉𝑆𝑀9) and Γ(𝑉𝑆𝑀10). The class 𝐶 and 𝑄 are 
empty in the case of Γ(𝑉𝑆𝑀9). Additionally, class 𝐶 is not empty and 
𝑄 is empty in the case of Γ(𝑉𝑆𝑀10). Therefore, γ (Γ(𝑉𝑆𝑀9)) =
 |{𝑥7, 𝑥9}| = 2 and γ (Γ(𝑉𝑆𝑀10)) =  |{𝑥7, 𝑥9, 𝑥10}| = 3. 

2.13. Definition:  
For the positive integer 𝑛, let 𝜋(𝑛) = { 𝑝1, 𝑝2, … , 𝑝k} be the set of 
consecutive prime numbers that is less or equal to 𝑛 that satisfies 
𝑝t + 𝑝t+1 >  𝑛. The total number of elements in 𝜋(𝑛) is denoted by 
𝜋∗(𝑛) = | 𝜋(𝑛)|. 

2.14. Definition:  

 Let 𝜋(𝑛) be given as in Definition 2.12. Define 𝑠𝑓
∗ as the positive 

integers ⌈𝑛

2
⌉ < 𝑠𝑓

∗ ≤  𝑛 so that the following happens: 

1) 𝑠𝑓
∗  ∉  𝜋 (𝑛)  

2) gcd (𝑠𝑓
∗, 𝑝f) =  1 for all 𝑝f ∈ 𝜋 (𝑛)  

3) gcd (𝑠𝑓
∗, 𝑠𝑙

∗) =  1 for any pair ⌈
𝑛

2
⌉ < 𝑠𝑓

∗, 𝑠𝑙
∗ ≤  𝑛  

The number of 𝑠𝑓
∗ is defined as 𝑆∗ = |𝑠𝑓

∗| 

2.15. Theorem: 
Let 𝑉𝑆𝑀𝑛 be a variation monogenic semigroup. The chromatic 
number of Γ(𝑉𝑆𝑀𝑛) is given as 𝜋∗(𝑛)  +  𝑆*. 
Proof: Note that 𝑥𝑝𝑓  𝑥𝑝𝑙  ∈ E(Γ(𝑉𝑆𝑀𝑛)) for any 𝑝f, 𝑝 l ∈  𝜋 (𝑛). 
Therefore, we need 𝜋*(𝑛) distinct colors to color all the vertices 
𝑥𝑝𝑓 where 𝑝f ∈  𝜋 (𝑛). Let color 𝐶1 be assigned to vertex 𝑥𝑝1 ,  where 
𝑝1 𝜖 𝜋(𝑛), then it is obvious that 𝑥r 𝑥𝑝1  ∉ E (Γ(𝑉𝑆𝑀𝑛)) for 𝑟 prime 
and 𝑟 ∉ 𝜋 (𝑛). This implies that color C1 can be assigned to all 
vertices 𝑥r. 

Next, consider the set of vertices 𝑥𝑠𝑓
∗
 so that 𝑥𝑠𝑓

∗
 ∉ 𝜋 (𝑛), ⌈𝑛

2
⌉  <

 𝑠𝑓
∗ ≤ n. For any pair 𝑠𝑓

∗, 𝑠𝑙
∗, 𝑥𝑠𝑓

∗
𝑥𝑠𝑙

∗
 ∈  E (Γ(𝑉𝑆𝑀𝑛 )) and 

𝑥𝑝𝑓𝑥𝑠𝑓
∗

 ∈ E (Γ(𝑉𝑆𝑀𝑛)), which follows from the definition of 𝑠𝑓
∗

 

and Γ(𝑉𝑆𝑀𝑛). There is a need of an additional S* colors to color the 
set of vertices {𝑥𝑠𝑓

∗
}. Furthermore, the set of vertices {𝑥𝑚}, where 

1 <  𝑚 ≤  𝑛 , can be assigned the same color that was assigned to 
vertex {𝑥𝑠𝑓

∗
} if gcd (𝑚, 𝑠𝑓

∗) ≠  1. 
Lastly, vertex 𝑥 can be assigned any color that was assigned to the 
vertices of the graph, provided that the color is different from the 
color that was assigned to vertex 𝑥𝑛. Hence, the total number of 
colors needed to color the graph Γ(𝑉𝑆𝑀𝑛) is 𝜋∗(𝑛) + 𝑆∗. 

2.16. Theorem: 
When 𝑉𝑆𝑀𝑛 is a variation monogenic semigroup, the clique number 
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of Γ(𝑉𝑆𝑀𝑛) is given as 𝜋*(n) + 𝑆∗. 
Proof: Note that all the vertices 𝑥𝑝𝑖 , 𝑝𝑖  ∈  𝜋(n) are adjacent to each 
other, which follows from the definition of 𝜋(n) and Γ(𝑉𝑆𝑀𝑛). Next, 
consider the set of vertices { 𝑥𝑠𝑓

∗
} where ⌈𝑛

2
⌉  <  𝑠𝑓

∗  ≤ n. It is clear 
that 𝑥𝑝𝑖𝑥𝑠𝑓

∗
 ∈ E(Γ(𝑉𝑆𝑀𝑛)) since 𝑔𝑐𝑑 (𝑝𝑖 , 𝑠𝑓

∗) =  1. In addition, let 
{𝑥𝑡} be the set of vertices in Γ(𝑉𝑆𝑀𝑛) so that 1 ≤  𝑡 <  𝑝1 and 
𝑝1 ∈ 𝜋(𝑛). It is obvious that 𝑥t 𝑥𝑝1  ∉ E(Γ(𝑉𝑆𝑀𝑛)) since 𝑡 + 𝑝1  <
 𝑛. Also, for the pairs of vertices 𝑥𝑠𝑓

∗
, 𝑥𝑠𝑙

∗
;  𝑥𝑠𝑓

∗
𝑥𝑠𝑙

∗
∈ E(Γ(𝑉𝑆𝑀𝑛)) 

since gcd (𝑠𝑓
∗, 𝑠𝑙

∗) =  1 and 𝑠𝑓
∗ +  𝑠𝑙

∗ >  𝑛, which follows from 
the definition 𝑠𝑓

∗. Hence, the clique number of Γ(𝑉𝑆𝑀𝑛) is given as 
𝜋∗(𝑛) + 𝑆∗. 
2.17. Remark: 

The graph Γ(𝑉𝑆𝑀𝑛) is a perfect graph since 𝜒 (Γ(𝑉𝑆𝑀𝑛)) = 𝜔 

(Γ(𝑉𝑆𝑀𝑛)) =  𝜋∗(𝑛) + 𝑆∗. 
2.18. Example: 
For the graph Γ(𝑉𝑆𝑀7), we have 𝜋(7) =  {3, 5, 7} and so 𝜋∗(7) =
3. Also, 𝑆∗  = 0. Then, 𝜒(Γ(VSM7)) = 𝜋∗(7) + 𝑆∗  =  3 +  0 = 3 = 𝜔 
(Γ(𝑉𝑆𝑀7)). 
For the graph Γ(𝑉𝑆𝑀8), we have 𝜋(8)  =  {5, 7} and so 𝜋∗(8) =  2. 
Moreover, 𝑆∗ = 1. Then, 𝜒(Γ(VSM8))  = 𝜋∗(8) + 𝑆∗  =  2 + 1 = 3 = 
𝜔 (Γ(𝑉𝑆𝑀8)). 

Figure 4. The graph 𝚪(𝑽𝑺𝑴𝟖) and 𝚪(𝑽𝑺𝑴𝟕) 

 

For Γ(𝑉𝑆𝑀7), the minimum number of colors is three, and they are 
𝐶1 =  {𝑥7}, 𝐶2 =  {𝑥5 , 𝑥2 , 𝑥} and 𝐶3=  {𝑥6 , 𝑥4 , 𝑥3}. The complete 
subgraphs (cliques) from Γ ( 𝑉𝑆𝑀7 ) are {𝑥 5 , 𝑥 6 , 𝑥 7 }.  Hence, 
𝜔(Γ(𝑉𝑆𝑀7)) = 3. 
For Γ (𝑉𝑆𝑀8), the minimum number of colors is three, which are C1 
= {x8, x6, x4, x2}, C2 =  {𝑥7 , 𝑥} and 𝐶3=  {𝑥5 , 𝑥3} . The complete 
subgraphs (cliques) from Γ ( 𝑉𝑆𝑀8 ) are {𝑥 5  , 𝑥 6  , 𝑥 7}. Hence, 
𝜔(Γ(𝑉𝑆𝑀8)) = 3. 

2.19. Lemma:  
Let 𝑉𝑆𝑀𝑛 be a variation monogenic semigroup, then 𝛼(Γ(𝑉𝑆𝑀𝑛)) ≥ 
⌈

𝑛

2
⌉. 

Proof: We know that 𝑛
2

 ≤  ⌈
𝑛

2
⌉. For all 1 ≤ i, j ≤ ⌈𝑛

2
⌉, it is clear that 𝑖+ j ≤ 

n. Hence, xi is not adjacent with 𝑥𝑗 . Therefore, 𝛼(Γ(𝑉𝑆𝑀𝑛)) ≥ ⌈𝑛

2
⌉.  

2.20. Remark  
Let n be a positive integer. Define 𝑧𝑓

∗
 as the positive integers where 

⌈
𝑛

2
⌉ < 𝑧𝑓

∗
 < n so that the following happens:  

1) 𝑧𝑓
∗

 is not prime  
2) gcd (𝑧𝑓

∗
, ℎ𝑣) ≠ 1, or when gcd (𝑧𝑓

∗, ℎ𝑣 ) = 1, then 𝑧𝑓
∗ + ℎ𝑣 ≤ 

n for all 1 < ℎ𝑣 ≤ ⌈
𝑛

2
⌉  

The number of 𝑧𝑓
∗ is defined as 𝑍∗ = | 𝑧𝑓

∗ |. Hence, 𝛼(Γ(𝑉𝑆𝑀𝑛)) = 
⌈

𝑛

2
⌉ + 𝑍∗. 

2.21. Theorem:  
The graph Γ(𝑉𝑆𝑀𝑛) is a well-covered graph. 
Proof: We need to show that all maximal independent sets 

𝛼(Γ(𝑉𝑆𝑀𝑛)) given in Remark 2.19 are maximum.  
Next, for 𝑧𝑓

∗ and hv , as defined in Remark 2.19, suppose there is a 
vertex xc* ≠ 𝑥𝑧𝑓

∗
, where xc* ∈ V(Γ (𝑉𝑆𝑀𝑛)) and c* > ⌈𝑛

2
⌉. Additionally, 

let 𝑥ℎ𝑣 , xc* ∈ 𝛼*(Γ(𝑉𝑆𝑀𝑛)) for some maximal independent sets 
𝛼*(Γ(VSMn)) in Γ(𝑉𝑆𝑀𝑛). Note that gcd (𝑐∗, ℎ𝑣) = 1 and c*+ ℎ𝑣  > n 
since xc* ≠ 𝑥𝑧𝑓

∗
, which follows on from Remark 2.19. This implies 

that xc* 𝑥ℎ𝑣  ∈ E(Γ(𝑉𝑆𝑀𝑛)), which contradicts the assumption that 
𝛼*(Γ(𝑉𝑆𝑀𝑛)) is a maximal independent set. Therefore, xc* = 𝑥𝑧𝑓

∗
, 

which means that every maximal independent set is maximum in 
𝛼(Γ(𝑉𝑆𝑀𝑛)). Hence, 𝛼(Γ(𝑉𝑆𝑀𝑛)) is a well-covered graph. 

2.22. Proposition: 
Let 𝜋(n) = {𝑝1, 𝑝2, … , 𝑝𝑘} be the set of consecutive prime numbers 
that are less or equal to n so that 𝑝𝑡 + 𝑝𝑡+1  > n. In graph Γ (𝑉𝑆𝑀𝑛), 
we have the following:  
i) If 𝑖, 𝑗 ∈ 𝜋(n), then there is a cycle of length 3 that contains xi and 
𝑥𝑗 .  
ii) If 𝑖, 𝑗 ∉  𝜋(n), and 𝑖, 𝑗 ≠ 1, 2 are prime numbers, then there is a 
cycle of length 4 that contains xi and 𝑥𝑗 .  
Proof: i) Since 𝑖, 𝑗  ∈  𝜋(n), then 𝑖 + 𝑗  >  𝑛  and gcd (𝑖, 𝑗) = 1 . 
Hence, xi is adjacent to 𝑥𝑗 . Now there are two cases as follows:  
a) If 𝑖 <  𝑗, take 𝑘 =  𝑛 − 𝑖 + 𝛿 where 0 ≤ 𝛿 ≤ n. 𝛿 guarantees that 
𝑘 ≠  𝑖, 𝑗. Since 𝑗 is prime and 𝑘 ≠ 𝑗, then gcd (𝑘, 𝑗) =  1. Also, 
𝑘 +  𝑗 =  𝑛 − 𝑖 + 𝛿 +𝑗 > 𝑛, since 𝑖 <  𝑗. Therefore, xj is adjacent 
to 𝑥𝑘. Moreover, since i is prime and 𝑘 ≠ 𝑖, then gcd (𝑘, 𝑖) = 1. 
Also, 𝑘 + 𝑖 =  𝑛 − 𝑖 + 𝛿 + 𝑖 =  𝑛 + 𝛿 >  𝑛. Then, 𝑥𝑘  is adjacent 
to xi. Therefore, 𝑥i − 𝑥j− 𝑥k − 𝑥i is a cycle of length 3, which 
contains 𝑥i and 𝑥j. 
b) If 𝑗 < 𝑖. Take 𝑘 = 𝑛 − 𝑗 + 𝛿', where 0 ≤ 𝛿' ≤ n. 𝛿' guarantees that 
𝑘 ≠ 𝑖, 𝑗. The result uses the same arguments in case (a) above.  

ii) Since 𝑖, 𝑗 are prime numbers and neither of them are in 𝜋(n), then 
𝑖 +j ≤ n. Hence, xi is not adjacent to 𝑥𝑗 . This means that it is 
impossible to find a cycle of length 3 that contains xi and 𝑥𝑗 . Also, 
𝑖 , 𝑗 <  𝑛 and 𝑖, 𝑗 <  𝑛 − 1 since 𝑖, 𝑗 are not in 𝜋(n). Then, since 
𝑖, 𝑗 ≠  1, 2 we have that 𝑖 + 𝑛 >  𝑛, 𝑖 + (𝑛 − 1)  >  𝑛, 𝑗 + 𝑛 >
 𝑛, 𝑗 + (𝑛 − 1)  >  𝑛. Therefore, 𝑥i − 𝑥n − 𝑥j –  𝑥n-1 − 𝑥i is a cycle 
of length 4 that contains 𝑥i and 𝑥j. 

2.23. Theorem: 
Let 𝑥i − 𝑥j –  𝑥z be a path of length 3 in Γ (𝑉𝑆𝑀𝑛). If 𝑖 = 1 or 2, then 
|𝑎𝑛𝑛(xi) ∩  𝑎𝑛𝑛 (𝑥𝑧)| = 1. 
Proof: We have split the problem into the following two cases: 
Case 1: When 𝑖 = 1 . Recall that 𝑎𝑛𝑛  (x1) =  𝑥𝑛  and 𝑥𝑥𝑛  ∈ 
E(Γ(𝑉𝑆𝑀𝑛 )), which follows from the definition of Γ(𝑉𝑆𝑀𝑛 ). 
Therefore, we have 𝑗 = 𝑛, which implies that 𝑥𝑛𝑥𝑧 ∈ E (Γ(VSMn)), 
then 𝑥𝑛  ∈ 𝑎𝑛𝑛 (𝑥𝑧). Therefore, 𝑥𝑛  ∈ 𝑎𝑛𝑛 (xi) ∩ 𝑎𝑛𝑛 (𝑥𝑧). Hence, 
|𝑎𝑛𝑛(𝑥i) ∩ 𝑎𝑛𝑛(𝑥z)| = 1 since |𝑎𝑛𝑛(𝑥i)| =  {𝑥n} = 1. 
Case 2: When 𝑖 = 2. If n is odd, then 𝑥2 is adjacent to 𝑥n and not 
adjacent to 𝑥n. Hence, the result follows from case 1 above. If n is 
even, then 𝑥2 𝑥n-1 ∈ E(Γ(𝑉𝑆𝑀𝑛)), which follows from the definition 
of Γ(𝑉𝑆𝑀𝑛). Therefore, 𝑥2 𝑥n-1 ∈ E(Γ(𝑉𝑆𝑀𝑛)), which implies that 𝑗 =
 𝑛 − 1 . Also, for 𝑥𝑗𝑥𝑧  ∈  E( Γ ( 𝑉𝑆𝑀𝑛 )), 𝑗 + 𝑧 >  𝑛  and 
gcd (𝑗, 𝑧)  = 1. This is true since 𝑛 − 1 + 𝑧 >  𝑛 for 𝑧 > 1. 
Therefore, 𝑥 n-1 ∈ 𝑎𝑛𝑛 ( 𝑥𝑧 ). That is, 𝑥 n-1 ∈ 𝑎𝑛𝑛 (xi) ∩  𝑎𝑛𝑛 (xz). 
Hence, |𝑎𝑛𝑛(𝑥i) ∩ 𝑎𝑛𝑛 (𝑥z)| = 1 since |𝑎𝑛𝑛(𝑥i)|  =  {𝑥n-1}  =  1. 

  
From Proposition 2.21 and Theorem 2.22, the following can be 
deduced: 

2.24. Corollary:  
 A cycle in Γ(𝑉𝑆𝑀𝑛) cannot contain vertex 𝑥i, where 𝑖 = 1 𝑜𝑟 2. 
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2.25. Corollary:  
In Γ(𝑉𝑆𝑀𝑛), we have the following: 

1) 𝑎𝑛𝑛(𝑥1)  =  𝑥
n, 

2) 𝑎𝑛𝑛(𝑥2) = {
𝑥𝑛 , 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑥𝑛−1, 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
 

2.25. Proposition:  
A pentagon 𝑥 i −𝑥 j −𝑥 k −𝑥 f −𝑥 t −𝑥 i cannot be in Γ(𝑉𝑆𝑀𝑛) 
whenever 𝑛 < 8. 
Proof: We will prove this using a contradiction argument. Suppose 
there is a pentagon 𝑥 i−𝑥 j−𝑥k−𝑥 f−𝑥 t−𝑥 i when 𝑛 < 8. From 
Corollary 2.24, we get 𝑖, 𝑗, 𝑘, 𝑓, 𝑡 ≠ 1 𝑜𝑟 2. Now we have the 
following two cases:  
Case 1: When 𝑛 = 7 , since 𝑖, 𝑗, 𝑘, 𝑓, 𝑡 ≠ 1 𝑜𝑟 2 , then 3 ≤
 𝑖, 𝑗, 𝑘, 𝑓, 𝑡 ≤  7. The vertex x6 is not adjacent to x3 or x4. Hence, x6 
is adjacent to x5 and x7. Now there are two vertices left, which are x3 

and x4. However, x3 is not adjacent to x4. Therefore, it is impossible 
to find a pentagon 𝑥i−𝑥j−𝑥k−𝑥f−𝑥t−𝑥i. 
Case 2: When 𝑛 < 7, since 𝑖, 𝑗, 𝑘, 𝑓, 𝑡 ≠ 1 𝑜𝑟 2, then there are only 
four vertices or less. However, to create a pentagon, we need five 
different vertices. 

Lastly, we have the following result: 

2.26. Theorem: 
The graph Γ(𝑉𝑆𝑀𝑛) is a coprime graph. 
Proof: Recall from definition of Γ(VSMn) that for any pair of vertices, 
𝑥 i , 𝑥 j; 𝑥 i 𝑥 j ∈ E(Γ(𝑉𝑆𝑀𝑛 )) only if 𝑖 + 𝑗 > 𝑛 and gcd (𝑖, 𝑗) = 1. 
Combining definitions of Γ(𝑉𝑆𝑀𝑛) and coprime labeling gives the 
desired result. 

Bios 

Bana Jawid Al Subaiei 
Department of Mathematics and Statistics, College of Science, King Faisal 
University, Al Ahsa, Saudi Arabia, 00966500816416, 
banajawid@kfu.edu.sa 

Assistant professor at the department of mathematics and statistics, 
College of Science, King Faisal University. Vice dean of female affairs 
in the preparatory year deanship from 1438H until now. She got her 
PhD and master’s degrees from the University of Southampton, 
United Kingdom. She has published papers in the ISI journal. She 
has joined many committees at the department level, college level 
and university level, such as the main committee of scientific chairs. 
Orcid ID: 0000-0001-6279-4959 

Abolape Deborah Akwu 
Department of Mathematics and Statistics, College of Science, King Faisal 
University, Al Ahsa, Saudi Arabia, 00966567154625, aakwu@kfu.edu.sa 

Researcher and assistant professor at department of mathematics 
and statistics, College of Science, King Faisal University. She got her 
PhD and master’s degrees from the University of Ibadan, Ibadan, 
Nigeria and she has an unusual commitment to both teaching and 
quality research whereby she has done research on some aspects of 
graph theory and algebra. Additionally, she has published articles in 
journals that are index in Scopus. ORCID ID: 0000-0002-4665-5040 

References  

Beck, I. (1988). Coloring of a Commutative Ring. J. Algebra, 116(1), 208–
26. 

Berge, C. (1962). The Theory of Graphs and Its Applications. NY, NY: Wiley. 
Translated by Alison Doig. 

Das, K. Ch., Akgunes, N. and Cevik, A. S. (2013). On a graph of monogenic 
semigroups. Journal of Inequalities and Applications, n/a(44), n/a. 

DeMeyer, F.R., McKenzie, T., Schneider, K. (2002). The zero-divisor graph 
of a commutative semigroups. Semigroup Forum, 65(2), 206–14.  

DeMeyer, F.R. and DeMeyer, L. (2005). The zero-divisor graphs of 
semigroups. Journal of Algebra, 283(1), 190–8. 

DeMeyer, L., Greve, L., Sabbaghi, A. and Wang, J. (2010). The zero-divisor 
graph associated to semigroups. Communications in Algebra, 
38(9), 3370–91. 

Lovasz, L. (1972). Normal hypergraphs and the weak perfect graph 
conjecture. Discrete Math., 2, 253–267. 

Wright, S.E. (2007). Lengths of paths and cycles in zero-divisor graphs and 
digraphs of semi-groups. Communications in Algebra, 35(6), 
1987–91. 

 

 


