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ABSTRACT 
 

As part of the energy transition and climate change adaptation, buildings are increasingly required to interact dynamically with their environment to reduce 
energy consumption and mitigate environmental impacts. In this context, kinetic shading systems represent a promising solution, particularly those inspired by 
the adaptive mechanisms of plants responding to environmental stimuli, within a biomimetic design framework. This study follows such an approach by 
evaluating the performance of a proposed biomimetic kinetic shading system applied to a residential building located in Guelma, Algeria. A dual methodological 
framework was adopted, combining a problem-driven biomimetic approach with parametric simulation techniques. Three building orientations were assessed 
across five configurations of the shading system. The findings reveal that the biomimetic kinetic system effectively mitigates solar gains, reducing them by up to 
73% during the summer, which results in a 46.6% decrease in cooling energy demand. In the winter, the system enhances solar gains by 16%, leading to a 31.9% 
reduction in heating requirements. These results underscore the potential of this approach to improve building energy performance while advancing innovative 
and sustainable passive design strategies. 

KEYWORDS 

Biomimicry, energy consumption, optimization, parametric simulation, smart materials, solar gains 
CITATION 

Saci Hadef, S., Khelil, S. and Alkama, D. (2025). Building energy performance assessment based on a bio-inspired kinetic shading devices. Scientific Journal of King Faisal 
University: Basic and Applied Sciences, 26(2), 36–42. DOI: 10.37575/b/eng/250018 

 

1. Introduction 

The world is currently facing major environmental challenges, 
notably climate change and the increase in greenhouse gas 
emissions. The building sector plays a central position in this context, 
accounting for over 30% of global energy consumption and 
approximately 26% of total greenhouse gas emissions (U.S. Energy 
Information Administration, 2023). Given the growing urgency of the 
energy transition and the objective of reaching net-zero carbon 
emissions by 2050, reducing energy demand in buildings has become 
an essential priority (Sommese et al., 2022). The building envelope, 
as the essential interface between outdoor conditions and interior 
spaces, is pivotal to a building’s energy performance (Djedouani et al., 
2021; Khelil et al., 2022). Among its components, windows represent 
a particularly sensitive element: While they provide daylighting and 
contribute to passive solar gains, they are also a major source of 
thermal losses and gains (Ashraf and Abdin, 2024; Badeche, 2022); 
According to Sozer (2010), windows alone can account for nearly 
30% of a building’s total energy consumption. In response to these 
challenges, dynamic façade systems have emerged as a promising 
technological advancement. These systems are designed to adjust 
their physical characteristics in real time according to climatic 
conditions, solar radiation, or seasonal variations (Hosseini et al., 
2021). By doing so, they dynamically enhance both occupant well-
being and energy performance (Wang et al., 2024). Through the 
modulation of thermal, optical, and morphological properties, these 
façades offer a responsive solution that reconciles environmental 
performance with interior well-being (Brzezicki, 2024; Sommese et 
al., 2024). These adaptive systems typically incorporate geometric 
configurations or elements capable of autonomously or semi-
autonomously responding to external and internal stimuli. In the field 
of dynamic shading devices, two main categories of systems are 
identified. Active shading devices consist of mechanical movable 
devices that require an external energy source to operate. They are 
further divided according to Al-Masrani et al., (2018) into two 

subcategories: motorized personally controlled systems, where users 
directly or remotely activate electric motors to adjust shading 
elements, thereby enhancing comfort and achieving energy savings 
despite relatively simple movement mechanisms, and automatically 
controlled systems, which autonomously adapt to variations in light 
and heat through the interaction of sensors, controllers, and 
mechanical actuators. In parallel, hybrid shading systems leverage 
smart materials capable of deformation to produce spatial 
movements, thus combining passive and active mechanisms (Al-
Masrani et al., 2018). Their design is based on the principles of 
biomimetics, an approach that draws inspiration from natural systems 
and models to develop innovative and high-performance technical 
solutions (Bijari et al., 2025). Recent breakthroughs in digital design and 
fabrication technologies have greatly facilitated the application of 
biomimetic principles in the conception of dynamic shading systems. 
Parametric modeling tools now enable the simulation and optimization 
of complex adaptive behaviors, thereby facilitating their incorporation 
into high-performance architectural systems (Toutou et al., 2018). 
Simultaneously, the emergence of smart materials, engineered to 
respond to environmental stimuli such as light, temperature, and 
humidity, has greatly expanded the potential for implementing 
responsive and low-energy architectural solutions (Brzezicki, 2024; 
Sommese et al., 2024). This interdisciplinary convergence of biology, 
computational design, and material science has given rise to a new 
generation of bio-kinetic solar shading systems that unite technological 
innovation, functional resilience, and energy efficiency. These systems 
demonstrate a strong capacity to enhance building energy performance 
while maintaining a high level of indoor environmental quality through 
adaptive responses to fluctuating external conditions (Soliman and Bo, 
2023). Within this context, a growing body of research has focused on 
the integration of bio-inspired solar shading strategies aimed at 
optimizing building energy efficiency, particularly in hot and arid 
climates. In Egypt, Ashraf and Abdin (2024) developed a saguaro 
cactus-inspired façade that reduced cooling loads by 36.5% and total 
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energy consumption by 20%. Similarly, Shahin et al., (2023) used shape 
memory alloys in a rhododendron-mimicking dynamic envelope, 
achieving a 43% reduction in annual energy consumption. Mohamed 
et al., (2020) designed a PTFE membrane inspired by various plant 
species (mangrove, sunflower, cactus, Ipomoea), leading to a 39% 
decrease in cooling demand, while Abdel-Rahman (2021) optimized 
thermal transfers with a barrel cactus-inspired façade, achieving a 
12.65% energy reduction. In Algeria, Khelil (2021) created an adaptive 
façade based on Ipomoea purpurea, yielding daily energy savings of up 
to 13% during hot periods and 9% in colder months. Similarly, 
Hadbaoui (2018) translated the thermonastic behavior of the crocus 
flower into a passive bimetallic shading system, reducing summer 
energy consumption by up to 11.29%. Meanwhile, in a hot and humid 
climate, developed a light-responsive façade inspired by Oxalis 
oregana, achieving a 32% overall energy reduction. In a temperate 
climate, Kuru et al., (2018) applied a barrel cactus concept to a building 
in Atlanta, reducing heating demand by 51.5% and cooling needs by 
67.5%. The existing literature thus reveals a growing interest in bio-
inspired shading systems across diverse climatic contexts. These studies 
demonstrate that replicating the adaptive mechanisms of flora can 
achieve significant energy savings, primarily through the reduction of 
cooling loads. Such strategies, which integrate smart materials with 
morphological and functional principles derived from nature, have 
shown particular relevance in regions facing severe thermal stress, 
notably arid and semiarid climates. Nevertheless, two major research 
gaps persist. Firstly, the majority of studies have focused on tertiary 
sector buildings (e.g., offices, educational establishments). However, 
the residential sector, despite accounting for a substantial share of 
global energy consumption, remains largely underexplored in bio-
inspired architectural applications. Secondly, the geographical scope of 
existing research predominantly focuses on arid and tropical climates. 
Warm Mediterranean climates, characterized by marked seasonal 
variability, are significantly underrepresented. This research addresses 
these two critical gaps by focusing on a residential building located in 
Guelma, a city in northeastern Algeria characterized by a hot 
Mediterranean climate (Csa). This climate is marked by two highly 
contrasting seasons (Harbi et al., 2024): dry summers with intense solar 
radiation and cold winters with limited solar irradiance. According to a 
psychometric analysis based on the 2013 California Energy Code 
thermal comfort model (Figure 1), the region falls outside thermal 
comfort conditions for approximately 88% of the year. To address this 
issue, both passive and active strategies are needed: effective solar 
protection for 1,773 hours during the summer (20.2% of the year) and 
direct passive heat gains combined with high thermal mass for 1,931 
hours during the winter (22%). The central challenge lies in balancing 
summer overheating prevention with the optimization of solar heat 
gains during the winter (Sahnoune, 2022). To meet this challenge, the 
study proposes the development and implementation of a bio-kinetic 
shading system for a residential building. The system is designed to 
respond to daily and seasonal solar variations through biologically 
inspired morphological adaptability. To meet this challenge, the study 
proposes the development and implementation of a bio-kinetic 
shading system for a residential building. The system is designed to 
respond to daily and seasonal solar variations through biologically 
inspired morphological adaptability. This research aims to design, 
model, and evaluate a biomimetic kinetic shading system using a 
parametric approach. By assessing different aperture configurations 
based on orientation and seasonal variations, the study seeks to 
evaluate the system’s effectiveness in mitigating excessive solar gains 
during the summer while enhancing passive thermal gains during the 
winter. This approach aspires to contribute to the improvement of 
energy efficiency in residential buildings, aligning architectural design 
with the imperatives of the energy transition and the broader goals of 
sustainable development. 

Figure 1: (a) Dry bulb temperature, (b) global solar radiation, and (c) psychometric 
chart of Guelma 

 
2. Case Study Description 

Based on the typological analysis, a reference building was selected: 
a multifamily villa located at latitude 36°45'18.67" N and longitude 
7°42'74.09" E, within the “19 Juin” individual housing subdivision in 
the southeastern part of Guelma (Figure 2). This building consists of 
four floors, plus an accessible terrace, and houses three apartments. 
The first apartment occupies the first two floors, while the others 
occupy the third and fourth floors, respectively. Each apartment 
benefits from dual orientations: east and west. The room under study 
is a living room located on an intermediate floor (the third level) to 
avoid the direct influence of heat gains from the roof. It has a 
rectangular shape, measuring 5.20 m by 5.75 m, with a ceiling height 
of 3.06 m. This room accounts for approximately two-thirds of the 
total apartment area. It features an east-facing window measuring 
3.00 m by 1.60 m, resulting in a window-to-wall ratio of 30%. 
Figure 2: Location of the case study (a, b, c), 3D model of the analyzed building (e), and 

annual sun path diagram illustrating its orientation and solar exposure (f) 
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3. Materials and Methods 

A three-phase methodology was applied to assess the environmental 
performance of the biomimetic kinetic shading system: in situ 
measurements, biomimetic design, and validation via numerical 
energy simulations. 

3.1. Field Measurements: 
On-site measurements established the building’s thermal baseline 
without shading, ensuring accurate simulation calibration and 
impact assessment under the real climate. Critical periods were 
identified from Guelma’s 15-year dataset (2009–2023) from the 
Climate. One Building database, processed in Grasshopper using 
the “Ladybug Open EPW,” “Stat Weather File,” and “Import Stat” 
modules. The hottest week (July 20–26; design day: July 21) and 
coldest week (January 20–26; design day: January 21) were 
selected. Measurements on January 23 and July 25 (8 a.m.–6 p.m., 
every 2 hours) used a thermo-hygrometer (Hanna HI9565) to 
record ambient temperature and relative humidity at a height of 1 
m, following ASHRAE (2010). HVAC, appliances, and lighting 
remained off; openings were closed; shading devices were fully 
opened to neutralize external effects. 

3.2. Bio-Kinetic Shading Design Process: 
A problem-driven top-down biomimetic approach was applied, 
following the three-step framework of Sommese et al., (2022): 
problem framing, biological research, and implementation. This 
systematic process translates a context-specific architectural issue 
into a nature-inspired technical solution through abstraction, 
functional transposition, and validation. 

3.2.1. Scoping Phase: Defining the Architectural Problem 
The first step involves identifying the key environmental issue 
relevant to Guelma’s local climate (Csa), marked by significant daily 
and seasonal variations in solar radiation and ambient 
temperature. This climatic context results in two major challenges: 
(1) overheating during the summer, which necessitates solar 
protection strategies to limit unwanted heat gain, and (2) winter 
heat losses, requiring improved solar heat collection to reduce 
heating demand. 
3.2.2. Biological Research Phase: Observation, Selection, 

Abstraction 
This phase examined the thermonastic behavior of certain plants to 
identify adaptive mechanisms applicable at the architectural scale. 
The “Heavenly Blue” morning glory (Ipomoea tricolor) was selected 
as the biological model for its capacity to modulate its petal 
aperture in response to temperature changes from solar radiation. 
Morphologically, its petals spiral around a central axis, forming a 
compact cone when closed and a deployed polygonal geometry 
when open, thus optimizing light capture. Behaviorally, its petals 
open during sunny daytime and close at night, under clouds, or at 
low temperatures. The motion follows a progressive helical rotation 
driven by differential cell growth between the adaxial (inner) and 
abaxial (outer) petal surfaces. Time-lapse video analysis (Figure 3a) 
revealed two key adaptive mechanisms: (1) helical uncoiling 
around the central axis, creating radial opening, and (2) subtle 
longitudinal torsion from asymmetric growth, enhancing control of 
the surface area exposed to sunlight. 
3.2.3. Implementation Phase: Translating Natural Strategies Into a 

Technical System 
In this phase, functional principles observed in nature were 
abstracted and translated into a kinetic architectural system. The 
process began with the geometric simplification of a single petal, 

which, when closed, forms a spiral tightly coiled around a central 
axis and, when thermally activated, unfolds into an elongated, 
slightly twisted form, generating a radial opening. This 
transformation was abstracted into an elongated diamond -
shaped module—retaining vertical extension and opening via 
controlled rotation around its axis—replicating the flower’s 
helical mechanism. The asymmetry between adaxial and abaxial 
surfaces was modeled as a variable angular torsion, enabling 
rotation from −30° (closed) to +30° (fully open) (Figure 3b). 
Parametric modeling in Grasshopper (Rhinoceros 3D) defined 
each module as six elongated diamond-shaped surfaces arranged 
radially to form a dynamic cell reproducing natural 
opening/closing sequences. The system adapts in real time to 
thermal and solar variations: In the summer, partial opening 
reduces direct solar gains and cooling loads; in the winter, closing 
maximizes passive heat gains (Figure 3c). 

Figure 3: Biomimetic design process inspired by the “Heavenly Blue” morning glory 
flower 

 

The adaptive behavior is enabled by shape-memory polymers 
(SMPs), smart materials that recover their original form upon 
heating (Brzezicki, 2024). At low temperatures, SMPs have reduced 
elastic modulus, allowing deformation into a martensitic phase; 
reheating triggers return to the austenitic (stable) phase 
(Chayaamor-Heil and Laracuente, 2020). SMPs combine durability, 
mechanical strength, flexibility, precise actuation, and corrosion 
resistance, making them suitable for kinetic façades requiring 
repeated or load-bearing motion with low energy consumption 
(Naeem et al., 2024). As they can be activated solely by temperature 
changes, SMPs enable autonomous, closed-loop, self-reactive 
behaviors analogous to biological systems (Brzezicki, 2024). 

3.3.  Energy Simulation: 
The performance of the biomimetic kinetic shading system, in terms 
of solar gain control and energy demand reduction, was evaluated 
through simulations in the Grasshopper parametric environment, 
integrating Ladybug, Honeybee, and EnergyPlus for environmental 
modeling and thermal analysis (Sadeghipour et al., 2013). The 
geometries of the test space and shading device were modeled in 
Rhinoceros 3D, then imported into Grasshopper. Thermal zones 
were defined via Ladybug with site-specific weather data (Lahmar 
et al., 2022), and construction materials were assigned according to 
Algerian thermal regulations for residential buildings (Jaber and 
Ajib, 2011) (Table 1). Internal loads were based on occupancy 
profiles, equipment loads, and HVAC specifications, including COP 
values (Table 2). 
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Table 1: Thermal properties of construction materials used in the simulation model 
(Jaber and Ajib, 2011; Khadraoui and Sriti, 2018) 

Material 
Thickness 

(m) 
Thermal 

conductivity, λ 
(W/m.K)  

Specific heat, S 
(kJ/kg.K) 

Density, D 
(kg/m3) 

Cement mortar 0.02 1.4 1,080 2,200 
Hollow brick  0.10–0.15 0.48 1,080 900 

Air gap  0.05 0.047 1,000 1 
Plaster coating  0.02 0.35 936 1,150 

Hourdi  0.16 1.2 1,000 1,300 
Reinforced concrete  0.04 1.75 1,080 2,500 

 
Single glazing  

Solar Heat Gain 
Coefficient (SHGC) 

Visible Transmittance 
(VT) 

Thermal Transmittance 
(U-values) 

0.74 0.86 5.70 

Table 2: Boundary conditions for model simulation 
Parameter Criteria Value 

Occupancy 
Number of people per m² 0.05 ppl/m² 

Schedules 12 p.m.–12 a.m. 

Loads 

Equipment thermal loads per m² 5 W/m² 
Lighting density 3 W/m² 

Ventilation rate per person 0.0075 m3/s 
Infiltration rate 0.0003 m3/s-m² 

Temperature/ lighting 

Set point temperature for 
heating 
cooling 

 
20°C 
26°C 

Limit for lighting 300 lux 

HVAC system 
Type Ideal load air system 
COP 2.7 

All variables remained constant relative to the baseline, except for 
orientation, analyzed at 0° (south), 90° (west), and 270° (east) in 90° 
increments; north (180°) was excluded due to minimal solar exposure. 
Five blade tilt configurations were tested: −30° (fully open, 100% 
opening ratio), −15° (75%), 0° (50%), 15° (25%), and 30° (fully closed, 
0%). Simulations covered January 21 (heating design day) and July 21 
(cooling design day), identified via climatic analysis. Performance was 
assessed through solar gain reduction and heating/cooling energy 
consumption, comparing reference (no shading) and shaded cases to 
quantify energy performance improvements. 

4. Results and Discussion 

The energy simulation results are presented in three parts: (1) model 
validation, ensuring data reliability; (2) solar gain analysis, first by 
examining monthly averages by façade orientation, then by assessing 
the impact of different shading configurations; and (3) hourly energy 
consumption evaluation, focusing on cooling loads on the hottest day 
and heating loads on the coldest day. 

4.1. Model Validation: 
Since Sonelgaz’s electricity bills report only total dwelling consumption 
without detail by end-use or room, this study validated the energy 
model using in situ temperature measurements and thermal 
simulations, following the approach of Chaturvedi et al., (2024) and 
Lakhdari et al., (2021). This method treats the room as an independent 
unit, enabling precise definition of occupancy, temperature setpoints, 
and internal gains, and allowing accurate indoor temperature 
assessment. Simulated and measured indoor temperatures (Table 3) 
were compared using mean bias error (MBE) and the coefficient of 
variation of the root mean square error [CV(RMSE)], calculated as per 
ASHRAE, (2010) Guideline 14 (eqs. 1–2). 

MBE =
∑  (𝑋𝑚−𝑋𝑠)𝑛

𝑖=1

∑ 𝑋𝑚𝑛
𝑖=1

  (1) 

CV(RMSE) ==
1

ȳ
√

∑  (𝑀𝑖−𝑆𝑖)²𝑛
𝑖=1

𝑛
  (2) 

where Mi is the measured value, Si is the simulated value, n is the total 
number of values considered in the calculation, and ȳ is the mean of the 
measured values. 

The results showed excellent agreement: MBE = 0.1% and CV(RMSE) = 
1.1% in the summer; MBE = –1.32% and CV(RMSE) = 2.92% in the 
winter, well within ASHRAE’s (2010) limits (|MBE| ≤ 10%, CV(RMSE) ≤ 
30%). This confirms the model’s reliability for assessing heating and 
cooling performance. 

4.2.  Base Case Performance Evaluation: 
4.2.1. Solar Gain Estimation 
Figure 4 (b, c, d) presents the average hourly monthly solar gains for the 
base case without shading, considering east, south, and west 
orientations. 
 East (E): Gains concentrate between 6 a.m. and 12 p.m., peaking in the 

summer above 3.4 kWh/h, causing overheating; in the winter, low solar 
altitude reduces gains, increasing heating needs. 

 South (S): Gains occur from 10 a.m. to 4 p.m., peaking in transitional 
seasons at 3.6 kWh; this is favorable for passive winter heating but may 
cause summer overheating without shading. 

 West (W): Gains peak from 12 p.m. to 6 p.m. between May and 
September (up to 2.9 kWh/h), leading to end-of-day heat accumulation 
and high summer overheating risk; modest winter gains still support 
late-day heating. 

Introducing biomimetic, kinetic shading significantly reduces summer 
solar gains versus glazing-only scenarios. With a −15° opening, the 
reductions are 41% (S), 36% (E), and 40% (W). At 0°, the reductions 
increase to 58.8% (S), 56.25% (E), and 50% (W). At 15°, they reach 
73.07% (S), 72% (E), and 71.42% (W). In the winter, compared to fully 
closed shading, activating the system increases gains as follows: at −15°: 
+5% (S), +4% (E, W); at 0°: +10% (S), +9% (E), +8% (W); at 15°: +16% 
(S), +18% (E), +15% (W) (Table 3). 
These findings highlight the adaptive capacity of biomimetic shading to 
mitigate summer overheating while enhancing passive winter gains, 
thereby improving seasonal building energy performance. 

Figure 4: Solar gains for east (a), west (b), and south (c) orientations 

 

Table 3: Solar gains and losses according to orientation 
and shading system configuration. 

Angle of 
shading panel 

Solar losses (kWh) Solar gains (kWh) 
East South West East South West 

−30° 3.42 3.62 2.92 1.39 1.45 1.17 
−15° 3.25 3.25 2.74 1.34 1.40 1.12 

0° 2.07 2.07 1.75 0.86 0.91 0.74 
15° 1.4 1.42 1.19 0.59 0.64 0.53 
30° 0.81 0.86 0.67 0.37 0.38 0.32 

4.2.2. Cooling Loads 
For the east-facing façade, cooling demand rises sharply from 8 a.m. 
due to morning solar exposure, peaking around 5 p.m. The glazing-
only case (−30°) records the highest daily energy use, exceeding 470 
Wh. Shading at 15° or 30° limits direct gains between 8 a.m. and 1 
p.m., with the 15° configuration reducing cooling loads by 46.4%, 
showing the benefit of early-day active shading. 
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Figure 5: Hourly evolution of cooling energy consumption according to orientations and 
shading system configurations 

 
For the south-facing façade, loads increase steadily from 8 a.m. to 5 
p.m., with generally lower values than other orientations. Dynamic 
shading effects appear from late morning, with 15° providing a 10.7% 
reduction starting at 11 a.m. as solar gains intensify. While differences 
are less marked than for the east-facing façade, dynamic shading still 
moderates midday peaks and improves comfort. 
For the west-facing façade, cooling loads rise from noon and peak 
between 3 and 5 p.m. under the intense afternoon sun. Shading 
effectiveness is most apparent after 1 p.m.; the 15° opening achieves 
up to a 33% reduction. Orientation- and time-specific control, 
especially partial openings around 15°, effectively limits critical solar 
gains, enhances comfort, and reduces active cooling demand, 
particularly valuable for the east and west orientations, where solar 
management is most challenging. 

Figure 6: Hourly evolution of heating energy consumption according to orientations 
and shading system configurations 

 

 
4.2.3. Heating Loads 
The heating loads for the east, south, and west façades follow a 
concave daily pattern, with a notable drop between 11 a.m. and 1 
p.m., coinciding with peak solar radiation and reduced reliance on 
active heating. Demand rises in the early morning and late afternoon 
due to limited solar gains. 
For the east façade, heating peaks between 8 and 10 a.m., when solar 
input is minimal. Partial shading at −15° reduces loads by 13% 
compared to full closure (+30°), demonstrating the value of adaptive 
modulation in the morning. The south façade benefits from extended 
direct solar exposure (9 a.m.–1 p.m.), yielding the lowest heating needs. 
Partial opening at −15° maximizes solar capture while limiting losses, 
cutting heating loads by up to 31.9% between 10 a.m. and 2 p.m., 
confirming the winter advantage of this orientation. On the west 
façade, heating decreases slightly from 8 a.m. to 12 p.m., then rises in 
the afternoon due to solar path geometry. Partial opening at −15° 
between 11 a.m. and 2 p.m. reduces heating by 6.11%. Cross-analysis 
with cooling loads highlights the bimodal functionality of the 
biomimetic kinetic shading system: reducing cooling needs—
particularly on the east and west façades in the summer—while 
enhancing passive solar gains on the south façade in the winter. This 
adaptive capacity enables fine-tuned seasonal performance, offering a 
strategic tool for high-performance, climate-responsive building 
design. This study’s results align with prior research regarding the 
influence of kinetic shading systems on buildings’ energy performance. 
For instance, the observed improvements in solar gains align with the 
conclusions drawn by Hadbaoui (2018), Khelil (2021), and Salah and 
Kayili (2022), who demonstrated the importance of dynamic shading 
devices during extreme climatic periods. Regarding the reduction in 
heating demands, the results correspond to the work of Kuru et al., 
(2018), who highlighted the significant contribution of adaptive 
façades to lowering winter energy requirements. Moreover, the 
analysis of energy consumption related to air conditioning is consistent 
with previous observations (Ashraf and Abdin, 2024; Mohamed et al., 
2020; Shahin et al., 2023; Sheikh and Asghar, 2019). This highlights 
how biomimetic adaptive envelopes contribute not only to reducing 
energy consumption but also to improving thermal comfort for building 
occupants. These points of convergence underscore the value of the 
biomimetic kinetic approach as a credible and innovative strategy for 
advancing sustainable, energy-efficient architectural design. 
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5. Conclusion 

This study proposes a biomimetic kinetic shading system inspired by 
the morphological and behavioral dynamics of the morning glory 
(Ipomoea tricolor) flower to address the challenge of improving energy 
efficiency in warm Mediterranean climates. Following a problem-
driven biomimetic methodology combined with parametric 
simulations, the research evaluated the impact of different opening 
configurations on solar gains and energy consumption in a residential 
building. The findings indicate that the system adaptively regulates 
solar heat gains according to orientation, seasonal changes, and time of 
day. This adaptability reduces cooling demand in the summer while 
maintaining passive solar benefits in the winter, thereby enhancing 
both building energy performance and indoor thermal comfort. To 
ensure practical applicability, future research should focus on 
developing and testing physical prototypes to assess mechanical 
behavior, functional efficiency, and architectural integration. An in situ 
validation phase will be essential to evaluate performance under real 
climatic conditions, including effects on thermal comfort, daylight 
quality, energy use, and user interaction, as well as to confirm or refine 
simulation results. A comprehensive life cycle assessment of the 
materials covering extraction, manufacturing, transport, installation, 
operation, maintenance, and disposal will guide the selection of smart, 
durable, recyclable materials with low environmental impact. 
Moreover, applying multi-objective optimization algorithms will help 
refine the system’s design parameters to achieve an optimal balance 
between environmental efficiency, economic viability, architectural 
expression, and user acceptance. Overall, this research demonstrates 
the potential of biomimicry as a design strategy for creating adaptive, 
high-performance, and sustainable building envelopes that support the 
goals of energy transition and climate-responsive architecture. 
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