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ABSTRACT 
 

Oropharyngeal dysphagia (OD) is characterised by difficulty swallowing liquids or food, significantly affecting an individual ’s quality of life and potentially 
leading to serious health issues such as poor nutrition, dehydration and pneumonia. Diagnosis typically involves the use of a video fluoroscopic swallowing study 
(VFSS), a method that, while effective, is expensive, time-consuming and requires expert interpretation. Recent advancements in artificial intelligence (AI) offer a 
promising alternative for enhancing dysphagia diagnosis by providing a more efficient and accurate solution. In this paper, we propose an AI-based system for 
diagnosing OD. The system processes multi-frame image data from VFSS videos using mask region-based convolutional neural network for object detection and 
segmentation. This method is based on a feature pyramid network and a ResNet101 backbone. It calculates five kinematic measures – ring measurement, hyoid 
displacement, bolus clearance ratio, pharyngeal constriction ratio and peak esophageal sphincter – to assess the presence or absence of the swallowing disorder. 
The system was evaluated in real time on 250 patients (150 males and 100 females), classifying them as either with or without  dysphagia, and achieved an 
accuracy of 96.8%. This system is expected to significantly assist clinicians. 
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1. Introduction 
Oropharyngeal dysphagia (OD) refers to difficulty in swallowing a 
liquid or food from the mouth to the oesophagus (Kim et al., 2024), 
which can lead to various health complications such as Parkinson’s 
disease (López-Liria et al., 2020), stroke (Labeit et al.,2024), or sclerosis 
(Sadeghi et al., 2024). It adversely affects quality of life and well-being, 
and may result in social exclusion. Individuals suffering from dysphagia 
have an increased risk (Langmore et al., 1998; Martin et al., 1994; Jones 
et al., 2020) of choking, malnutrition, dehydration and even 
pneumonia. Early identification of this condition is therefore crucial for 
enabling appropriate treatment planning and reducing adverse 
outcomes. Accurate diagnosis and timely detection ensure improved 
treatment results and enhance provider–patient interactions. 
Conventional diagnostic techniques include clinical examination, 
video fluoroscopic swallowing studies (VFSSs) (Kim et al., 2024; Min 
et al., 2024) and fibreoptic endoscopic evaluation of swallowing 
(FEES) (Slovik et al., 2025). While these are widely used tools for 
assessing dysphagia, each presents certain limitations. Clinical 
examination is highly dependent on the clinician’s expertise and may 
be subjective. VFSS, also known as the modified barium swallow 
study, involves the use of fluoroscopy to visualise the swallowing 
process in real time while the patient consumes barium-coated food 
or liquid. VFSS presents several limitations (Inamoto et al., 2024), 
including: 1) radiation exposure, 2) being resource-intensive and 
requiring specialised equipment, 3) the need for specialised 
personnel, 4) patient discomfort, 5) allergic reactions and 6) a limited 
assessment duration. FEES (Slovik et al., 2025) involves the insertion 
of a flexible endoscope through the nasal passage to visualise the 
pharynx and larynx during swallowing. However, FEES also has 
drawbacks, such as discomfort, anxiety, limited visualisation, reliance 
on patient cooperation and the requirement for specialised training. 
These limitations underscore the need for alternative methods to 
assess dysphagia. Recent advancements in artificial intelligence (AI) 

have opened new avenues for the intelligent detection and 
management of dysphagia. By leveraging advanced sensor 
technologies and machine learning algorithms, AI systems can 
provide more accurate, efficient, cost-effective and accessible 
diagnostic solutions, offering non-invasive alternatives that 
ultimately enhance patient care and outcomes (Verma et al., 2025). 

In Pakistan, dysphagia remains underdiagnosed due to several factors 
(Akhtar et al., 2024), including a lack of awareness, limited access to 
specialised healthcare facilities and financial constraints. Research 
conducted in the Pakistani context has shown the use of upper gastric 
endoscopy to assess dysphagia (Kamran et al., 2021; Rashid et al., 
2020). AI technology has the potential to address these challenges by 
enabling remote monitoring and supporting telemedicine, both of 
which are vital for reaching underserved populations. Machine 
learning and deep learning algorithms can analyse complex datasets. 
By learning from large volumes of data, subtle patterns and variations 
in swallowing activity can be detected, resulting in more accurate 
diagnosis. 
This paper proposes a smart OD detection AI system based on video 
fluoroscopic data. The key contributions are as follows: 
1. The proposed model utilises the AI framework mask region-based 

convolutional neural network (Mask R-CNN) for object detection. 
This framework is applied to X-ray images to enhance diagnostics. 
Mask R-CNN identifies and delineates regions of interest and enables 
accurate detection of dysphagia. Once the regions are identified, five 
kinematic measures – ring measurement, hyoid displacement (HD), 
bolus clearance ratio (BCR), pharyngeal constriction ratio (PCR) and 
peak oesophageal sphincter (PESmax) – are calculated to assess the 
presence or absence of the swallowing disorder. The system reduces 
the need for manual interpretation by clinicians and ensures reliable 
diagnosis. 

2. Automating the detection process helps reduce the potential for 
human error. This is particularly valuable in clinical settings where 
accuracy is essential for effective and immediate treatment planning. 

3. In Pakistan, developing and utilising this AI system for dysphagia 
detection promotes interdisciplinary collaboration among clinicians, 
computer scientists and researchers. 

https://doi.org/10.37575/b/med/250007
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The remainder of the paper is structured as follows: Section 2 
discusses related work on dysphagia detection using AI techniques. 
Section 3 details the proposed model architecture. Section 4 outlines 
the dataset used. Section 5 presents the results and findings. Sections 
6 and 7 address patient privacy, ethical considerations and model 
limitations. Section 8 concludes the paper with insights drawn from 
the experiments and suggestions for future research.  

2. Related work 

OD is a medical condition that affects swallowing. If left untreated, it 
can lead to serious health problems such as malnutrition, 
dehydration, choking, coughing during meals and respiratory 
infections like pneumonia. The European Society for Swallowing 
Disorders and the European Union Geriatric Medicine Society classify 
OD as a geriatric syndrome (Sadeghi et al., 2024). 
The diagnosis of OD requires careful clinical observation in addition to 
relevant medical examination. It follows a multi-step approach that 
begins with screening and clinical history, and culminates in 
instrument-based evaluation (Sadeghi et al., 2024). The doctor takes a 
detailed history and examines all reported symptoms and signs. This is 
followed by a clinical assessment of swallowing to evaluate whether 
choking or aspiration is present. The VFSS is considered the gold 
standard. It captures and stores sequential X-ray videos of the passage 
of the food bolus through the pharynx. Supplementary tests such as 
FEES, oesophagogastroduodenoscopy and manometry are performed 
when there is suspicion of a structural or functional abnormality. These 
tools collectively provide detailed information and visual insight into 
the swallowing process, aiding in the formulation of an effective 
intervention. Lately, advances have been made in imaging procedures, 
with greater reliance on technology. AI offers great value in identifying 
patterns in data that may be difficult for the human eye to detect. 
(Fattori et al., 2016) compared VFSS with other modalities such as 
endoscopy and scintigraphy. Their study illustrates the diagnostic 
precision of these instruments for OD. Omari et al., (2013) evaluated 
the impact of different food textures on the swallowing process using a 
technique called automated impedance manometry (AIM). Deep 
learning is now widely used in medical imaging. One popular technique 
is the convolutional neural network (CNN), which recognises patterns 
in images. Many CNN models exist – such as AlexNet (Krizhevsky et al., 
2017), VGGNet (Simonyan and Zisserman, 2014), GoogleNet 
(Szegedy, 2015), ResNet (He et al., 2016) and DenseNet (Huang et al., 
2017) – and are used to classify medical images. Analysing videos, 
however, is more complex. Unlike single images, videos have a time-
based sequence. To work with video data, individual frames are 
extracted and analysed. These frames are then processed using AI 
models like recurrent neural networks, 3D-CNNs or MoViNets. A major 
challenge is that most video analysis still depends on human 
interpretation. Future research is expected to focus on automating 
video-based OD detection. Machine learning and deep learning tools 
can assist doctors in making faster and more accurate decisions. Markus 
et al. (Gugatschka et al., 2024) built a dysphagia risk prediction model 
using a machine learning method called Random Forest. It analysed the 
health records of more than 33,000 patients from 2011 to 2019 and 
included 800 different health-related features. Their system achieved 
an accuracy of 92.6%. In another study, Markus et al. (Martin-Martinez 
et al., 2023) used feature selection and non-linear methods to create an 
expert system for predicting OD risk. 
CNNs are especially useful for medical images. Jeong et al. (2024) 
created a web-based AI tool using the YOLOv7 model to analyse VFSS 
videos. Each video was broken down into about 300 frames. The 
system labelled them as oral, pharyngeal or oesophageal phases. It 
could also determine whether dysphagia involved penetration or 
aspiration. Their model achieved accuracy ranging from 0.79 to 0.96. 

Girardi et al., (2023) reviewed how AI is used to study VFSS videos. 
They found that CNNs improve accuracy and help speech 
pathologists better understand swallowing problems. Reddy et al. 
(2023) used 2D-CNNs, LSTM networks and 3D-CNNs to detect 
aspiration in VFSS videos. They compared the performance of 
different models. Jeong et al. (2023) also developed a tool to 
automate the timing of swallowing phases in VFSS videos. Their 
ResNet3D model outperformed models such as VGG and I3D, 
offering faster and more reliable results. In addition to computer 
vision techniques applied to VFSS data, researchers have explored 
other approaches such as swallowing sound analysis (Dudik et al., 
2018; Miyagi et al., 2020), monitoring neck vibrations and using 
wearable sensor devices (O’Brien et al., 2021; Rafeedi et al., 2023) to 
detect swallowing disorders. These techniques enable continuous 
real-time monitoring of swallowing function. 
As far as is known, no existing systems use AI to detect OD specifically 
through VFSS video footage in the way proposed here. Although 
some paradigms exist for medical image analysis and swallowing 
assessment, they do not address the same multifaceted combination 
of objectives, input types and kinematic measurements. For this 
reason, fair comparisons with other models under the same 
conditions could not be established. Moreover, no statistical 
significance was tested against other methods, as no comparable 
baselines specifically designed for this solution currently exist. The 
proposed approach is therefore novel and sets the groundwork for 
future benchmarks and comparative analyses. 

3. Methodology 

The proposed AI-based smart tool is designed to assist in the 
evaluation of OD. It primarily uses video fluoroscopy to assess 
swallowing function. A comprehensive analysis of swallowing 
kinematics is performed using the following measures to capture 
both spatial and temporal aspects of swallowing: 
• Ring measurement 
• Hyoid displacement (Molfenter and Steele, 2013) 
• Bolus clearance ratio (Leonard et al., 2023) 
• Pharyngeal constriction ratio (Stokely et al., 2015) 
• Peak oesophageal sphincter (Leonard et al., 2000) 

The workflow of the proposed system is illustrated in Figure 1.  

Figure 1: Flow diagram of the proposed system. It begins with the input X-ray video of a 
person consuming syrup, proceeding to the final kinematic calculations. 

 

The following steps outline the process of determining the presence 
or absence of dysphagia using video fluoroscopic data.  

3.1. Video Acquisition and Frame Extraction: 
The process begins with the acquisition of an X-ray video capturing a 
person consuming syrup, serving as the initial input for analysis. The 
most commonly used syrup for dysphagia assessment is nectar-thick 
syrup. This consistency is frequently selected because it is slightly 
thicker than water yet still easily drinkable, making it a practical and 
effective starting point for evaluating swallowing difficulties. Nectar-
thick liquids are often preferred due to their balance between ease of 
swallowing and reduced risk of aspiration compared to thin liquids. 

The video then undergoes frame extraction to dissect each stage of the 
swallowing process. Specific attention is directed towards the 



30  
 

 

 

  Riaz, Z., Dilawari, A., Iqbal, S. and Alyahya, A.A. (2025). Automated oropharyngeal dysphagia assessment with mask r -cnn and kinematic measures.. Scientific Journal of King Faisal University: Basic and Applied Sciences , 
26(2), 28–35. DOI: 10.37575/b/med/250007 

oropharyngeal region, where swallowing occurs. Using segmentation 
techniques, individual frames are processed to isolate and delineate the 
bolus being swallowed, as well as any residual bolus present in the 
throat. To perform this segmentation, Mask R-CNN is employed, taking 
advantage of its capabilities in object identification and delineation 
within images. The model used for segmentation is Mask R-CNN.  

3.2. Mask R-CNN Segmentation: 
The Mask R-CNN (Bharati and Pramanik, 2020) architecture applied 
in this research was trained with three times (3×) the default number 
of iterations to improve convergence and performance. The 
implementation utilises a ResNet-101 backbone integrated with a 
feature pyramid network (FPN) for efficient multi-scale feature 
extraction. Mask R-CNN is designed for instance segmentation and 
object detection, automatically identifying objects in input images 
and generating corresponding masks. The base architecture is 
illustrated in Figure 2, adapted from (He et al., 2017). 

Figure 2: Mask R-CNN architecture. 

 

Mask R-CNN extends Faster R-CNN by incorporating a mask 
prediction branch, resulting in a robust deep learning model capable 
of object detection and pixel-level segmentation. It uses a Region 
Proposal Network (RPN) to generate candidate object regions, while 
separate branches (heads) handle classification, bounding box 
regression and mask prediction. The RoI Align operation ensures 
accurate spatial alignment between features and input data. 
Training involves a combination of loss functions: binary cross-
entropy for masks, smooth L1 loss for bounding boxes and cross-
entropy for classification. Key hyperparameters include momentum 
(typically 0.9), batch size (2–16) and learning rate (e.g. 0.001). The 
dataset is generally divided into 70%–80% for training and 20%–
30% for validation or testing. 
The complexity of Mask R-CNN arises from its multi-branch 
architecture and deep backbone network, particularly when working 
with high-resolution images and multiple object classes. Training and 
inference require significant computational resources, including 
high-performance GPUs with large memory capacity. The number of 
region proposals, feature map sizes and backbone depth directly 
affect computational cost. 
Moreover, the model’s flexibility lies in its adaptability to varying input 
conditions. Through FPN and RoI Align, it effectively handles objects of 
different scales and aspect ratios. Its performance is also shaped by 
runtime factors such as data augmentation, pretraining and dataset 
diversity. The model further adjusts dynamically to changes in training 
conditions, including batch size and learning rate schedules. 

Figure 3: Process starting with capturing an X-ray video of a person consuming syrup 
and ending with the final calculations. 

 

3.2.1. Neural Network Architecture 
The foundation of this model is a deep convolutional network known 
as ResNet-101 (He et al., 2016). This network collects high-level 
features from the input image and creates a multi-scale feature map 
using an FPN. This makes it robust in detecting objects of varying 
sizes. FPN generates rich feature maps at various resolutions by 
integrating high-resolution features from earlier layers with low-
resolution ones. This combination provides detailed spatial 
information and strong semantic context, which improves the 
network’s accuracy in detecting objects of different sizes. In simple 
terms, the FPN combines the detailed information that the ResNet-
101 backbone obtains from the input image at multiple scales, 
allowing the model to recognise and detect objects of any size. 
ResNet-101 is a deep CNN with 101 layers. Its architecture includes 
an input layer, an initial convolutional layer, a max-pooling layer, 
residual blocks, fully connected layers and an output layer. 

ResNet-101’s input layer requires images sized at 224 × 224 pixels. 
The initial convolutional and pooling layers are the first stages of the 
network and are responsible for capturing basic features such as 
edges and textures. This convolutional layer applies 64 filters of size 
7 × 7 with a stride of 2, reducing the spatial dimensions of the input. 
A 3 × 3 max-pooling layer, with a stride of 2, further reduces the 
spatial dimensions and helps make the model resistant to small shifts. 
ResNet-101 includes a total of 33 bottleneck residual blocks. These 
blocks are organised into different stages that reduce the number of 
channels to lower dimensionality and facilitate the training of deep 
networks. After passing through the residual blocks, the feature map 
is average-pooled to reduce its dimensions down to 1 × 1. This is 
followed by a connected (dense) layer that links the pooled features 
to the number of output classes. A softmax activation function then 
generates class probabilities. 
For dysphagia detection, this model helps by extracting detailed 
features from video frames to identify abnormalities in the 
swallowing process. It has the potential to be used in real-time 
systems to provide immediate feedback, assisting clinicians in making 
timely decisions. 

3.3. Research Metrics: 
Using sophisticated tools, several anatomical and functional 
parameters were evaluated to characterise and quantify the 
mechanics of swallowing. These measurements offered a thorough 
understanding of the swallowing process and the challenges 
associated with it, particularly in diagnosing dysphagia. Standardised 
reference objects, anatomical movement tracking and ratio 
calculations were used to assess oesophageal function, pharyngeal 
constriction and bolus clearance. Each technique was designed to 
extract key data from the X-ray videos, allowing for accurate and 
reliable evaluation of swallowing efficiency. The metrics are defined 
as follows: 
3.3.1. Ring Measurement  
In the X-ray video analysis, a reference object – usually a ring – is 
fixed to the subject’s chin to precisely measure physical distances. The 
X-ray images are standardised using this reference, allowing pixel 
values to be converted into centimetres. The pixel distance is 
translated into real-world measurements using the known diameter 
of the ring. Equation 1 gives the pixel-to-centimetre formula for ring 
measurement:  

Conversion Factor = Pixel Diameter of the Ring / Actual Diameter of 
the Ring (cm) 

Real-World Distance (cm) = Pixel Distance × Conversion Factor   (1) 
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3.3.2. Hyoid Displacement 
To assess swallowing mechanics, the displacement of the hyoid 
region, a crucial anatomical marker, is examined. The initial position 
and displacement of the hyoid bone are monitored during and after 
the bolus is swallowed. The HD percentage is calculated based on the 
degree of movement observed during swallowing. The magnitude 
and direction of hyoid motion are determined by tracking its position 
across multiple frames. Equation 2 provides the formula for HD: 

HD = initial hyoid position − displaced hyoid position    (2) 

3.3.3. Bolus Clearance Ratio Measurement 
BCR is determined by comparing the area of bolus residue left in the 
throat with the total area of bolus successfully swallowed. This ratio 
measures bolus clearance during swallowing and is an important tool 
in dysphagia diagnosis. A lower BCR may indicate potential swallowing 
issues, increasing the risk of aspiration or other complications. A higher 
BCR reflects a more efficient swallowing process. The percentage value 
of residual bolus is defined in Equation 3. 

BCR = (area of residue bolus left in throat / total area of bolus) * 100          (3) 

3.3.4. Pharyngeal Constriction Ratio Measurement 
The PCR is calculated after the BCR. Pharyngeal contraction occurs 
when the bolus moves towards the oesophagus, which is measured 
using the PCR. This is calculated by examining how the pharyngeal 
region changes both prior to and during swallowing. 
A higher PCR value may imply less constriction, possibly indicating 
dysphagia. A lower PCR value implies better pharyngeal constriction 
and more efficient bolus propulsion. Equation 4 shows the formula 
for PCR: 

PCR = ((total area of bolus – area of residual bolus) / total area of bolus) * 100      (4) 

3.3.5. Peak Oesophageal Sphincter Measurement 
PES pressure was determined using sensors positioned in the lower 
oesophageal region. These sensors recorded pressure both before 
and during the swallowing of the bolus. Peak pressure was identified 
when the sensors detected the maximum pressure exerted in the 
lower oesophagus. The pressure readings, initially measured in 
millimetres of mercury (mmHg), were converted to centimetres. 
The greatest opening of the upper oesophageal sphincter (UES) during 
swallowing is measured by the PESmax opening. This parameter is 
essential for the bolus to move from the pharynx into the oesophagus. 
The effectiveness of the swallowing mechanism was evaluated by 
examining the frames to determine the maximum UES opening. 
Minimum PESmax values may indicate compromised UES function, 
which increases the risk of aspiration and contributes to dysphagia. 
The PESmax formula is shown in Equation 5: 

PESmax = pressure in mmHg/10              (5) 

• DATASETS 
In this research, 250 VFSS cases were randomly selected from 1,000 
cases. The patients were between 24 and 85 years of age, including 
150 males and 100 females. Dysphagia was diagnosed in 130 
patients through VFSS video readings by medical doctors. The data 
were collected from specialised medical centres, with patient 
confidentiality carefully maintained. Two physicians with more than 
five years of experience participated in conducting the VFSS 
examinations and validating the results produced by the proposed 
system. 
The dataset used consists of videos showing individuals swallowing 
a bolus. Frames from these videos were extracted to distinguish cases 
with dysphagia from those without any signs. This dataset played a 

key role in training the model, which focuses on analysing bolus 
clearance during swallowing. 

4.  Experimental Results 

This section discusses two cases in detail. Case 1 illustrates the 
processing steps used to demonstrate the presence of dysphagia in 
VFSS data, while Case 2 depicts the absence of the swallowing disorder. 

4.1. Case 1 – Presence of Dysphagia: 
This is a case where a person shows signs of dysphagia, as 
demonstrated through images of the bolus passing through the 
oesophagus and the residue left behind. Figure 4 shows the labelling 
of the bolus as it moves from the mouth to the pharyngeal phase, 
frame by frame, which was later approved by the medical officer. 

Figure 4: Images (a)–(d) show the patient holding a bolus in the mouth and then 
consuming it. The bolus passes down the throat, but a residual amount is left in the 

pharyngeal region, indicating the presence of dysphagia. (a) shows the patient holding 
bolus/syrup in the mouth; (b) shows the swallowing of bolus; (c) shows the bolus 

moving through the pharyngeal to oesophageal region; and (d) shows a swallowing 
attempt that was unsuccessful due to residual bolus left in the oesophageal region.  

  
                  Oral Phase         Pharyngeal phase 

  

        Oesophageal phase              Penetration 

The step-by-step outcome of the proposed AI system showing how the 
bolus moves from the mouth to the oesophagus is illustrated in Figure 5. 

Figure 5: Images (a)–(f) show the area outlining measures to capture swallowing. (a) 
Posterior–anterior (PA) hold shows that the patient is positioned so that the 

fluoroscopy images can be taken from the back (posterior) to the front (anterior) of the 
body; (b) shows the mask ring; (c) and (d) show the minimum and maximum bolus; (e) 

and (f) show the hyoid initial and displaced positions. 

  
(a) PA Hold (b) Mask Ring 

  
(c) Minimum Bolus (d) Maximum Bolus 
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(e) Hyoid Initial (f) Hyoid Displaced 

The discovery of a residual bolus in the pharyngeal area despite 
partial passage down the throat in this example emphasises the 
presence of dysphagia in the subject. The amount of this residual 
bolus relative to the total bolus swallowed is calculated, shedding 
light on the severity of the swallowing impediment. Furthermore, the 
evaluation measures the quantity of bolus still present, particularly in 
the pharyngeal area, which suggests compromised clearance 
mechanisms at this critical phase of swallowing. 
These metrics provide an extensive assessment of swallowing ability, 
which is essential for identifying and treating dysphagia. More can be 
learned about biomechanical anomalies and swallowing efficiency 
by measuring HD. On the other hand, measuring the highest pressure 
in the lower oesophageal area provides insight into physiological 
factors, such as the health of the oesophageal sphincter and possible 
causes of dysphagia symptoms. When combined, these measures 
offer valuable information that can help pinpoint deficiencies and 
guide focused interventions for managing dysphagia. 
The measures calculated to capture swallowing are as follows:  

BCR = 50.98% 
PCR = 11.57% 

HD = 1.55 cm 
PESmax = 0.61 cm 

These measures indicate the percentage of the bolus that has been 
successfully cleared from the throat, represented by the BCR. 
Similarly, the PCR expresses the extent of pharyngeal constriction 
during swallowing. The pharyngeal region is contrasted before and 
during the swallow. HD reflects the actual physical movement of the 
hyoid bone. PESmax is measured in centimetres to represent the 
maximum physical opening of the UES during swallowing. 
The final output of the proposed AI system is shown in the graph in 
Figure 6.  

Figure 6. Graph showing the movement of the hyoid during the swallowing process. 

    
The graph shows the movement of the hyoid during the swallowing 
process. The green point indicates the starting position, red indicates 
the lowest point, and blue indicates the highest point. It was 
generated using the x- and y-coordinates of the hyoid movement 
during the process. The purpose was to observe how much the hyoid 
was displaced throughout the entire swallowing event. 

4.2. Case 2 – Absence of Dysphagia:  
This is the case where a person shows no signs of dysphagia, as 
shown through the images – the bolus passes through the 
oesophagus, and no residue is left behind. Figure 7 shows the 
labelling of the bolus as it moves from the mouth to the pharyngeal 
phase, frame by frame, which was later approved by the medical 
officer. 

Figure 7: Images (a)–(d) show the patient holding the bolus in the mouth and then 
consuming it. The bolus passes down the throat without getting stuck or leaving 

residue in the pharyngeal region, showing the absence of dysphagia. (a) shows the 
patient holding bolus/syrup in the mouth, (b) shows the swallowing of the bolus, (c) 

shows the bolus moving through the pharyngeal region to the oesophageal region, and 
(d) shows successful swallowing with no residual.  

  
(a) Oral Phase (b) Pharyngeal phase 

  
(c) Oesophageal phase (d) Penetration 

The area outlining the step-by-step outcome of our proposed AI 
system, which shows the bolus moving from the mouth to the 
oesophagus, is presented in Figure 8.  

Figure 8: Images (a)–(f) show the steps used to capture swallowing. (a) Posterior-
Anterior (PA) hold shows the patient positioned for fluoroscopy images taken from the 

back (posterior) to the front (anterior) of the body; (b) shows maximum bolus; (c) 
shows the mask ring; (d) and (e) show the hyoid in initial and displaced positions; and 

(f) shows the graph of hyoid movement during the swallowing process. 

  
(a) PA Hold (b) Mask Ring 

  
(c) Maximum Bolus (d) Hyoid Initial 
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(e) Hyoid Displaced (f) Graph 

The measures calculated to capture swallowing are as follows:  
BCR = 0.1% 
PCR = 0.0% 
HD = 1.64 cm 

PESmax = 1.37 cm 

The findings show that the patient does not have dysphagia. There is 
no material remaining in the pharynx, and the bolus travels down the 
throat easily and smoothly. This indicates that the swallowing 
function is effective and free from any obstruction or impairment, 
giving confidence in the individual’s swallowing ability. 

5. Performance Measurement Method  

To calculate the accuracy of dysphagia classification, the true labels 
and predicted labels for each VFSS instance were determined. True 
labels indicate whether dysphagia is present (positive) or absent 
(negative) based on expert diagnosis, while predicted labels are the 
output from our proposed AI system. A confusion matrix was 
constructed, including the following: 
• True positives (TP): Cases where the system correctly predicts the 

presence of dysphagia. 
• True negatives (TN): Cases where the system correctly predicts the 

absence of dysphagia. 
• False positives (FP): Cases where the system incorrectly predicts the 

presence of dysphagia. 
• False negatives (FN): Cases where the system incorrectly predicts the 

absence of dysphagia. 

Accuracy, recall, and F1-score were calculated using Equations (5), (6), 
and (7), respectively. These metrics provide insight into how 
effectively the system classifies the presence or absence of dysphagia. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                               (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                             (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                         (7) 

Based on Equation (5), accuracy was calculated as: 

Accuracy = 
242

250
 * 100 = 96.8% 

Substituting values into Equation (6), recall was calculated as:  

Recall = 
122

122+4
 = 0.968 

Substituting into Equation (7), the F1-score was calculated as: 

F1-score = 
2∗0.968∗0.968

0.968+0.968
 = 0.968 

In our study, the average processing time for detecting dysphagia 
using the proposed system for an entire VFSS video ranged from 1 to 
1.5 minutes. One factor contributing to this variation was the 

hardware specifications of the PC used. Table 1 presents the accuracy 
scores reported by state-of-the-art methodologies used for dysphagia 
detection.  

Table 1: State of The Art Approaches in Dysphagia Detection 
Methods Sample Findings 

ResNet3D variant (Jeong et al., 2023) 547 VFSS video 
clips 0.901 

2D-CNNs with short temporal windows (Bandini 
and Steele, 2021) 78 participants 0.93 

Three CNNs (Iida et al., 2023) 
Simple layer 

Multiple layer 
Modified LeNet 

130 participants 

 
0.973 
0.890 
0.95 

Deep CNN using U-Net (Lee et al., 2020) 106 participants 
with dysphagia 0.932 (video files) 

CNN (MobileNet with fine-tuning) (Kim et al., 
2022) 190 participants 0.936 

Mask RCNN, feature pyramid network and 
ResNet101 (present study) 250 participants 0.968 

This study has certain limitations: the system was developed based 
on patients from a single medical centre, necessitating additional 
validation tests from other hospitals. Furthermore, VFSS has 
limitations related to poor inter- and intra-rater reliability. 
Inexperienced medical examiners might misinterpret results due to 
the complex anatomy of the human neck or poor video quality, which 
could result from uncooperative patients. Future research should aim 
to advance the study by considering the characteristics of disease-
specific swallowing disorders. 

6. Patient Privacy and Ethical Approvals 
in Medical Research 

In medical research, especially studies involving AI and sensitive data 
such as VFSSs, ensuring patient privacy and obtaining ethical 
approval are critical. To maintain the privacy of the patient, all 
personally identifiable information requires anonymisation or 
pseudonymisation prior to use. The researchers comply with relevant 
laws such as HIPAA or GDPR, which stipulate the deletion of names, 
contact information and other identifying information. 
Confidentiality is also maintained through secure data storage, 
encryption and restricted access to authorised personnel. Patient data 
must be used only after an institutional review board or ethics 
committee grants the necessary approval. These entities assess the 
study’s data handling, the design of the study and informed consent 
processes, and then develop an opinion on the ethical validity of the 
study. Participants must be effectively informed about how their data 
are utilised while agreeing to provide consent without duress. Ethical 
and patient privacy compliance enhances the trustworthiness of the 
study and the protection of human rights, notably in innovations 
involving AI and healthcare technologies. 

7. Misclassification Cases and Model 
Limitations 

Even though our AI-based system for detecting OD showed accurate 
results, some issues stood out, such as the model’s limitations. 
Misclassification or incomplete classification – in our case, false 
negative scenarios – are among the biggest concerns. False negatives 
refer to cases where the system did not detect dysphagia in patients 
who were clinically diagnosed and confirmed to have the issue. These 
cases pose a problem, as missing an emerging health disorder, such 
as swallowing difficulties, can result in serious complications like 
aspiration pneumonia or malnutrition. On closer analysis, numerous 
problematic areas were located among the video files, some of which 
were suspected to contain one or two binders supplying only video 
streams. Matching videos to descriptions posed a challenge, even for 
seasoned professionals. Incomplete collaboration, such as not fully 
swallowing, also contributed to these hurdles. In other instances, the 
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overlap of certain bone structures and anatomical features may have 
interfered with the tracking of key kinematic elements, including HD 
and pharyngeal constriction. From the results, we realise that 
although the model performed to our satisfaction, there is a need for 
improved sensitivity in borderline cases. Additional steps that could 
augment the model’s potential, such as incorporating patient history 
or audio data, may also include increasing the frame rate of 
animations to ensure that relevant features are more recognisable in 
dynamic images. Focus should also be placed on the patient’s clinical 
information to improve preprocessing protocols. 

8. Conclusion and Future Work 

This study presents an AI-based detection system that interprets VFSS 
videos to identify patterns and anomalies that may not be visible to 
the human eye. The processing and interpretation of VFSS are adept 
at recognising visual patterns in medical images, allowing the 
detection of dysphagia-related abnormalities in swallowing 
mechanics. To achieve this, an AI-based system was developed for 
diagnosing OD. The system processes multi-frame image data from 
VFSS videos using Mask R-CNN for object detection and 
segmentation, which is based on FPN and ResNet101 architecture. It 
then calculates five kinematic measures – ring measurement, HD, 
BCR, PCR and PESmax – to assess the presence or absence of the 
swallowing disorder. A total of 250 patients were screened 
automatically in real time and compared with clinician assessments. 
An accuracy of 96.8% was achieved through this proposed system. 
This algorithm proved to be an excellent tool for classifying patients 
with or without dysphagia. The software has potential utility in 
regions where medical resources are limited, such as Pakistan. Future 
developments include the preparation of additional datasets and 
testing the model using advanced AI systems capable of generating 
clinical reports to support physicians. 
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