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ABSTRACT 
 

In satellite communication systems, effective spectrum sensing and management are essential, especially in scenarios involving both geostationary Earth orbit 
(GEO) and non-geostationary Earth orbit (NGEO) satellites. As the number of NGEO satellites increases, managing interference with GEO signals becomes more 
complex. This study introduces a machine learning (ML) framework for spectrum sensing, spectrum hole detection and occupancy prediction based on satellite 
data. The framework utilizes two ML models, support vector machine (SVM) and random forest (RF), along with a hybrid model combining both. SVM is used to 
classify spectrum occupancy based on GEO signals, while RF is employed to detect spectrum holes and predict future occupancy patterns. The hybrid model 
merges the strengths of both to enhance prediction accuracy and robustness. A comparative analysis of the models evaluated accuracy, computation time and 
robustness against interference. The results show that SVM achieved 99.17% accuracy, excelling in precision, while RF reached 99.12% accuracy, demonstrating 
better recall and more effective identification of occupied spectrum regions. The hybrid model outperformed both, achieving 99.25% accuracy, with an improved 
balance between precision and recall and superior performance under complex interference conditions. This study highlights the effectiveness of SVM, RF and 
their hybrid in optimizing spectrum management. 
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1. Introduction 
Spectrum utilization is important in wireless communication mainly 
because of the growing demand. Both geostationary Earth orbit 
(GEO) and non-geostationary Earth orbit (NGEO) satellite systems 
(Sharma et al., 2016) Share limited spectrum resources, which is the 
main limitation of the networks. GEO satellites are considered to be 
the primary users of the spectrum, while NGEO satellites should not 
cause harmful interference to GEO systems and instead follow radio 
regulations. Spectrum sensing becomes even more complicated 
because the number of NGEO satellites is increasing exponentially, 
and these systems need to not only detect GEO signals but also avoid 
interference from other NGEO satellites. Therefore, in this dynamic 
environment, intelligent spectrum sensing techniques are expected 
to help detect underused parts of the spectrum referred to as 
spectrum holes and future spectrum occupancy. Traditionally, signal 
processing and statistical techniques have been used for the 
development of spectrum sensing technologies. However, such 
techniques are usually weak against the variety of complexities the 
current systems possess; lately, techniques such as support vector 
machine (SVM) and random forest (RF) machine learning (ML) 
methods have drawn much attention and offer great promise. Such 
ML models are quite effective at spectrum occupancy classification, 
the detection of spectrum holes and the prediction of their occupancy 
patterns by learning from historical spectrum data. This paper 
introduces a new ML framework using SVM and RF models based on 
satellite data for spectrum sensing, spectrum hole detection and 
spectrum occupancy prediction. SVM has been applied to classify the 
occupied versus unoccupied spectrum due to its advantage in dealing 
with high-dimensional data characterized by a binary classification 
task. The RF model can perform ensemble learning applied to predict 
future spectrum occupancy and recognize spectrum holes based on 
historical data patterns and relationships (Cullen et al., 2023). 

This paper covers the key challenges that must be overcome in the 

spectrum management process, including the detection of GEO 
signals (Nasser et al., 2021) through the interference caused by 
NGEO, available spectrum identification and the real-time prediction 
of future occupancy. With this, a comparative analysis of SVM and RF 
models is undertaken to determine which one performs better in 
terms of location-based spectrum analysis. Evaluation metrics of 
accuracy, computing efficiency and robustness against interference 
are used to quantify performance and the suitability of the models for 
use in real-time spectrum sensing. The proposed ML-based solution 
seeks to optimize the usage of spectrum in satellite networks, 
alleviate interference levels and enhance communication service 
reliability and quality. Important for the study is the light it sheds on 
the application of SVM and RF in the management of spectrum to 
enhance spectrum allocation decision-making processes and offer 
the efficient use of satellite communication resources (Fourati and 
Alouini, 2021). 

The paper is structured as follows. Section II reviews related work on 
spectrum sensing, spectrum hole detection and occupancy prediction 
using ML models. Section III outlines the proposed system, analyzing 
GEO and NGEO satellite networks, with SVM applied for spectrum 
occupancy classification. Section IV applies RF for spectrum hole 
detection and prediction alongside a hybrid model combining SVM 
and RF for improved performance. Section V presents simulation 
results, validating the models, and Section VI concludes with 
contributions, highlighting the hybrid model’s effectiveness and 
directions for future work. 

2. Related Work  
Cognitive radio networks (CRNs) and satellite communications focus 
on efficient spectrum utilization, with much research on spectrum 
sensing, spectrum hole detection and occupancy prediction in 
complex environments, such as satellite networks with GEO and 
NGEO systems. Traditional techniques, such as energy detection and 
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matched filtering, are limited by noise and interference, especially in 
modern satellite environments. Consequently, ML approaches have 
been adopted to model complex relationships and adapt to dynamic 
environments (Kaur et al., 2017). SVM and RF are popular ML models 
for spectrum sensing and hole detection (Feng et al., 2021). SVM is 
effective for binary classification and robust against noise, while RF 
excels at predicting future spectrum occupancy and handling non-
linear patterns (Liu and Gryllias, 2020 and Venkatapathi et al., 2024). 
Previous work, such as (Liu and Gryllias, 2020. and Ding et al., 2020), 
focused on enhancing spectrum sensing in satellite networks, 
addressing challenges such as interference from NGEO satellites and 
computational complexity. Ren et al., (2021) explored AI-based 
models to improve efficiency in spectrum sensing. 

2.1. Comparative Evaluation of AI Models: 
Few studies compare ML models for spectrum sensing in satellite 
networks. Sabir et al., (2024) found that RF outperformed other 
models in terrestrial environments, but no comprehensive study 
exists for satellite networks. This paper fills that gap by evaluating 
SVM and RF for spectrum hole detection and occupancy prediction in 
satellite communications, comparing the performance of SVM and RF 
models with the algorithms used in selected related works. 

Table 1. Quantitative Representation of Performance Parameters 

Actor SVM 
(Proposed) 

RF 
(Proposed) 

Ding et al., 
(2020) 

Nasser et 
al., (2021) 

Ren et al., 
(2021) Hybrid Model 

Ability to 
Detect 

Spectrum 
Holes 

Reliable in 
clear 

conditions; 
limited by 

noise 
sensitivity 

Highly 
effective due 
to ensemble 

decision-
making 

Robust for 
varied 

scenarios; 
computation
ally intensive 

Performs 
moderately; 
struggles in 

dynamic 
environmen

ts 

Effective but 
requires 
careful 

tuning for 
optimal 
results 

Highly effective in 
diverse 

environments; 
combines ensemble 

decision-making 
and robust 

classification 
techniques 

Accuracy 
for 

Spectrum 
Sensing 

(%) 

99.17 
(excellent 
precision; 

prone to false 
negatives 

under 
interference) 

99.12 
(balances 
precision 
and recall 

effectively) 

97.4 (good 
but slightly 

lower due to 
generalizatio

n issues) 

92.5 
(suffers in 
low SNR 

environmen
ts) 

95.8 (decent 
performance; 
stable under 

moderate 
noise) 

99.55 (outperforms 
others; excellent 

precision and recall 
balance) 

Robustne
ss to 

Noise 

Handles 
moderate 

noise but is 
affected by 

high 
interference 

Strong 
resistance to 
noise due to 

majority 
voting 

Maintains 
good 

accuracy 
under 

moderate 
noise; 

struggles in 
high noise 

Limited 
noise 

handling; 
requires 

preprocessi
ng 

Handles 
moderate 
noise well; 

degradation 
under 

extreme 
conditions 

Exceptional 
resistance to noise; 

leverages combined 
strengths of SVM 

and RF 

Predictio
n Speed 

(Real-
Time) 

Fast due to a 
simpler model 

architecture 

Fast and 
scalable; 

suitable for 
real-time 

operations 

Moderate; 
slows down 

with 
complex 

feature sets 

Quick but 
with 

accuracy 
trade-offs in 

real-time 
use 

Moderate; 
speed 

decreases 
with larger 

datasets 

Fast and suitable for 
real-time operations 

with efficient 
resource utilisation 

Handling 
Complex 
Interfere

nce 
(GEO/N

GEO) 

Limited 
capability; 

struggles with 
overlapping 

signals 

Capable of 
managing 

overlapping 
GEO and 

NGEO 
interference 

Good 
interference 

management 
but 

computation
ally heavy 

Weak 
performanc

e under 
complex 

interference 
scenarios 

Moderate 
ability; may 

need 
additional 

features for 
handling 

Excels in managing 
complex 

interference with 
adaptive 

mechanisms 

Scalabilit
y with 
Large 

Datasets 

Processes 
moderate-

sized datasets 
efficiently but 
struggle with 

very large 
datasets 

Easily 
handles 

large 
datasets due 

to parallel 
processing 

Handles 
large 

datasets but 
at the cost of 

increased 
computation 

time 

Limited 
scalability; 

requires 
down 

sampling 
for large 

data 

Moderate 
scalability; 

needs tuning 
for large-

scale 
operations 

Highly scalable; 
combines RF’s 

parallel processing 
and SVM’s 
efficiency 

Handling 
of 

Imbalanc
ed Data 

Requires 
extensive 

preprocessing 
to balance 

datasets 

Manages 
imbalance 
well using 
weighted 

voting and 
bootstrappi

ng 

Good at 
handling 

imbalance 
but slower in 

learning 

Suffers from 
high class 
imbalance 

without 
manual 

intervention 

Moderately 
handles 

imbalance 
but benefits 

from 
balanced 

training sets 

Excels at managing 
imbalance with 

advanced ensemble 
techniques 

Hyperpar
ameter 
Tuning 

Complexi
ty 

Complex 
tuning process 

involving 
kernel 

selection and 
regularisation 

Simpler 
tuning 

process with 
fewer critical 
parameters 

Requires 
careful 

adjustment 
of deep 
model 

parameters 

Minimal 
tuning is 
needed. 

Fixed 
parameters 

work in 
most cases. 

Complex 
tuning 

involving 
kernel 

adjustments 
and 

hyperparame
ter grids 

Moderate tuning 
complexity – 

optimized 
combination 

reduces effort. 

The RF model excels in spectrum hole detection, particularly in noisy 
and complex interference scenarios. Both models show excellent 

accuracy and good prediction speed, making them suitable for real-
time applications. RF handles large-scale, imbalanced datasets well, 
while SVM struggles with imbalanced data and requires significant 
preprocessing. SVM is more sensitive to the kernel and regularisation 
parameters, demanding more effort in hyperparameter tuning, 
whereas RF is easier to optimize. Ding et al., (2020) model achieved 
good results but is computationally intensive and less suitable for 
real-time applications. Nasser et al., (2021) and Ren et al., (2021) 
models were less robust under complex interference and scalability 
conditions. Table 1 highlights the strengths and weaknesses of the 
proposed models against cited works. 

3. System Model and Sensing Scenario 
In this framework, we developed an ML-based system for spectrum 
sensing and occupancy analysis within CRNs using satellite data. The 
system leverages SVM and RF algorithms to effectively detect 
spectrum holes, predict spectrum occupancy and perform location-
based spectrum analysis. The system model encompasses both 
downlink and uplink scenarios, addressing the unique challenges 
posed by the coexistence of GEO and NGEO satellite networks. 

3.1.  System Model: 
The system model consists of GEO satellites, NGEO satellites and 
sensing Earth stations. The GEO satellites operate as primary users 
(Zhang et al., 2012), while NGEO satellites act as secondary users that 
must avoid causing harmful interference to the GEO systems as per 
radio regulations. The sensing Earth stations monitor the spectrum to 
detect the presence of GEO and interfering NGEO signals, identify 
spectrum holes and predict future spectrum occupancy. 
3.1.1. Signal Model for Downlink Scenario 

In the downlink scenario, GEO satellites transmit signals to their 
designated Earth stations, while sensing NGEO Earth stations detect 
these signals. Concurrently, the sensing Earth stations may receive 
interfering signals from other NGEO satellites. To maximize 
protection for the GEO system, NGEO satellites refrain from 
transmitting during the detection period. 

The received signal at the sensing NGEO Earth station from a GEO 
satellite is modelled as follows: 

𝑥!"# = #
𝑛$ , 𝐻%
ℎ&'𝑒()!"#)𝑃!"$ + 𝑛$ , 𝐻*

                                                       (1) 

Where: 𝑥!"#  is the received signal. 𝐻%  denotes the hypothesis that 
the GEO satellite is absent. 𝐻*  denotes the hypothesis that the GEO 
satellite transmits with power level 𝑃!"$ , where 𝑖 = 1, 2,… ,𝑁. ℎ!"  
is the channel gain between the GEO satellite and the NGEO Earth 
station. 𝜙!"#  is the channel phase, which is irrelevant for energy-
based sensing. 𝑛$  is additive white Gaussian noise (AWGN) (Wang et 
al., 2020) with zero mean and variance 𝜎+,. 

Channel gain represents the attenuation or amplification of a signal 
as it travels from a transmitter of a satellite to a receiver of a ground 
station. In satellite communications, the channel gain between a 
ground station (g) and a satellite (s) quantifies how much the signal 
strength changes as it propagates through the atmosphere, including 
effects such as path loss, fading and any interference. Mathematically, 
channel gain ℎ&'  is expressed as follows: 

ℎ&' = 𝐺-./,123𝐺!"4(𝜃5) 7
6

789:!"→&'
8
,
10

()*
+, 10

()-
+, 	 (2)	

Where: 𝐺-./,123  is the maximum gain of the sensing NGEO Earth 
station’s receive antenna. 𝐺!"4(𝜃5) is the gain of the GEO satellite’s 
transmit antenna at the off-axes angle 𝜃5.	𝑐 is the speed of light. 𝑓 is 
the centre frequency of the spectrum bands. 𝑑!"→-. is the distance 
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between the GEO satellite and the sensing NGEO Earth station. 𝐴& 
and 𝐴6  represent gaseous absorption and cloud/fog attenuation, 
respectively (Al-Hraishawi et al., 2022). 

The expression for the GEO satellite signal received by the sensing 
NGEO Earth station, 𝑥&'$ , describes the received signal’s statistical 
characteristics. Here’s a breakdown of the components: 

𝑥&'$ ∼ 𝒞𝒩(0, ℎ&'𝑃&'$ + 𝜎+
,)	 	 (3)	

Where: 𝑥&'$  represents the signal received by the NGEO Earth 
station from a GEO satellite. The subscript 𝑔𝑠𝑘  indicates that this 
signal is coming from a GEO satellite (g) to an NGEO Earth station (s) 
at time 𝑘, where 𝒞𝒩(0, ℎ&'𝑃&'$ + 𝜎+

,)  denotes that the received 
signal follows a complex Gaussian distribution (Fernández and 
Rowlandb, 2022). The two parameters of this distribution are Mean 
(the signal has a mean of 0, which typically occurs when assume the 
signal is centred around zero and has no bias) and Variance (the 
variance is given by the term ℎ&'𝑃&'$ + 𝜎+

, , which represents the 
total power received at the NGEO Earth station). 
3.1.2. Signal Model for Uplink Scenario 

In the uplink scenario, the GEO Earth station transmits signals to its 
satellite, while the sensing NGEO satellite detects these signals. 
Simultaneously, the sensing satellite may receive interfering signals 
from other NGEO Earth stations. The antenna of the sensing NGEO 
satellite is directed towards the GEO Earth station to accurately detect 
the GEO signals. 

The signal received from the GEO Earth station (Sirohiya et al., 2022) 
is expressed like this: 

𝑥!.# = #
𝑛$ , 𝐻&%
ℎ&<𝑒()!'#)𝑃!.$ + 𝑛$ , 𝐻&*

	 																			 (4) 

Where: 𝑥!.# is the received signal. 𝐻&% denotes the hypothesis that 
the GEO Earth station is absent. 𝐻&*  denotes the hypothesis that the 
GEO Earth station transmits with power level 𝑃!.$ , where 𝑖 =
1, 2,… ,𝑁. ℎ&<  is the channel gain between the GEO Earth station 
and the sensing NGEO satellite. 𝜙!.#  is the channel phase. 𝑛$  is 
AWGN with zero mean and variance 𝜎+,. 
Channel gain ℎ&<  is as follows: 

ℎ&< = 𝐺!.4(𝛾)𝐺-"/,123 7
6

789:!'→&"(>)
8
,
10

()*
+, 10

()-
+, 	 (5)	

Where: 𝐺!.4(𝛾)  is the gain of the GEO Earth station’s transmit 
antenna towards the sensing NGEO satellite at a geocentric angle 𝛾.	
- 𝐺-"/,123  is the maximum gain of the sensing NGEO satellite’s 
receive antenna. 𝑑!.→-"(𝛾) is the distance between the GEO Earth 
station and the sensing NGEO satellite, which is a function of 𝛾.	𝐴& 
and 𝐴6  represent gaseous absorption and cloud/fog attenuation, 
respectively. 

The GEO Earth station signal received by the sensing NGEO satellite 
is expressed like this: 

𝑥!.# ∼ 𝒞𝒩(0, ℎ&<𝑃!.$ + 𝜎+
,)	 	 (6)	

Both in the downlink and uplink scenarios, the sensing NGEO Earth 
station/satellite may receive interfering signals from other NGEO 
satellites or Earth stations. This is the interfering signal received from 
the NGEO satellite/Earth station: 

𝑥-"# = H
𝑛$ , 𝐻+%
ℎ+'𝑒()&"#I𝑃-". + 𝑛$ , 𝐻+(

	 	 (7)	

Where: 𝑥-"#  is the received interfering signal. 𝐻+%  denotes the 
hypothesis that the interfering NGEO satellite/Earth station is absent. 

𝐻+(  denotes the hypothesis that the interfering NGEO satellite/Earth 
station transmits with power level 𝑃-". , where	𝑗 = 1, 2,… ,𝑀. ℎ+'  is 
the channel gain between the interfering NGEO satellite/Earth 
station and the sensing NGEO Earth station/satellite. 𝜙-"#  is the 
channel phase. 𝑛$  is AWGN with zero mean and variance 𝜎+,. 

Channel gain ℎ+'  is defined as follows: 

ℎ+' = 𝐺-"4(𝛽, 𝛾)𝐺-./(𝛾) M
6

789:&"→&'(>)
N
,
10

()*
+, 10

()-
+, 	 (8)	

Where: 𝐺-"4(𝛽, 𝛾)  is the gain of the interfering NGEO satellite’s 
transmit antenna towards the sensing NGEO Earth station at angles 
𝛽  and 𝛾 . 𝐺-./(𝛾)  is the gain of the sensing NGEO Earth station’s 
receive antenna towards the interfering NGEO satellite at an angle 𝛾. 
𝑑-"→-.(𝛾)  is the distance between the interfering NGEO satellite 
and the sensing NGEO Earth station, which is a function of 𝛾.	𝐴& and 
𝐴6  represent gaseous absorption and cloud/fog attenuation, 
respectively. 

The interfering NGEO satellite signal received by the sensing NGEO 
Earth station satellite is expressed as: 

𝑥-"# ∼ 𝒞𝒩(0, ℎ+'𝑃-". + 𝜎+
,)	 	 (9)	

3.1.3.  Sensing Scenario 

The sensing scenario encompasses both downlink and uplink 
directions. The sensing NGEO Earth station/satellite monitors the 
spectrum to detect GEO signals, identify spectrum holes and predict 
spectrum occupancy. The ML models, SVM and RF, analyze the 
extracted features and make informed decisions about spectrum 
utilization. 
3.1.4. Downlink Scenario 

In the downlink scenario, the GEO satellite transmits signals to its 
designated Earth station, while the sensing NGEO Earth station 
detects these signals (Soares et al., 2023). Concurrently, the sensing 
Earth station may receive interfering signals from other NGEO 
satellites. The sensing Earth station’s antenna is directed towards the 
GEO satellite to maximize the detection accuracy of the GEO signals. 

1. Spectrum Sensing and Feature Extraction: The sensing NGEO 
Earth station collects signal samples 𝑠(𝑡)	from each frequency band 
𝑓. Energy Detection: For each frequency band 𝑓, compute the energy 
detector statistic:  

𝐸9 =
5
@
∑@AB5 |𝑠(𝑡)|,	 	 (10)	

This describes the process of extracting features 𝑥9  from the energy 
statistic 𝐸9  and contextual information, such as signal strength, time 
of day, geographic location (latitude, longitude) and historical 
spectrum occupancy data. Train the SVM model on labelled dataset 
𝐷 = {(𝑥* , 𝑦*)}, where 𝑦* ∈ {0,1} indicates unoccupied or occupied 
spectrum. Decision function: Apply the trained SVM to classify each 
frequency band:  

𝑦C/.D = sign\∑*∈F 𝛼*𝑦*𝐾(𝑥* , 𝑥9) + 𝑏`	  (11) 

If 𝑦C/.D = 0, mark the frequency band 𝑓 as potentially unoccupied. 
Train the RF model on the same labelled dataset 𝐷 = {(𝑥* , 𝑦*)} . 
Classification: For each frequency band 𝑓, aggregate the predictions 
from all decision trees:  

𝑦C/.D = mode\{𝑇A(𝑥9)}AB5
@/0''"`	 	 (12) 

If 𝑦C/.D = 0, mark the frequency band 𝑓 as potentially unoccupied. 

2. Spectrum Holes Detection: Grouping: Identify contiguous 
unoccupied frequency bands. Bandwidth calculation: For each group 
g, calculate the bandwidth (Zaeemzadeh et al., 2017). 
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𝐵𝑊& = 𝑓.-D 	−	𝑓"42/4	 	 (13) 

- Thresholding: If 𝐵𝑊& ≥ 𝐵𝑊1G-, classify 𝑔 as a spectrum hole. 

3. Spectrum Occupancy Prediction. Defining a prediction window 
Δt . Historical data: Utilise historical spectrum occupancy data to 
extract time-series features x#. Prediction using SVM and RF models 

𝑦C/.D = ∑*∈F 𝛼*𝑦*𝐾(𝑥* , 𝑥H) + 𝑏	 	 (14) 

If 𝑦C/.D < threshold , predict 𝑓  as unoccupied in Δ𝑡 . RF 
Regression: Predict future occupancy: 

𝑦C/.D =
5

@/0''"
∑@/0''"AB5 𝑇A(𝑥H)	 	 (15) 

If 𝑦C/.D < threshold, predict 𝑓 as unoccupied in	Δ𝑡. 

4. Location-Based Spectrum Analysis. Geographic grid definition: 
Define a grid G covering the geographic area. Feature extraction: For 
each location l ∈ G , extract location-specific features xI . 
Classification using SVM and RF: SVM classification is like this:  

𝑦C/.D = sign(∑*∈F 𝛼*𝑦*𝐾(𝑥* , 𝑥J) + 𝑏)	 	 (16) 

The proposed system model integrates SVM and RF algorithms 
within both downlink and uplink scenarios to enhance spectrum 
sensing and occupancy analysis in CRNs  (Zhang, Y. 2022).  using 
satellite data. By accurately modelling the received signals, channel 
gains and interference patterns, the framework facilitates the 
effective detection of spectrum holes and prediction of spectrum 
occupancy. 

4. Research Methodology: Tools and 
Techniques  

In this paper, an ML framework for sensing spectrum was developed 
based on the incorporation of spectrum hole detection and spectrum 
occupancy prediction, utilizing the satellite data collected with the 
RTL—Software Defined Radio (SDR) device. For training and 
evaluating two ML models of SVM and RF (Zhang et al., 2022), key 
parameters include frequency, signal strength, signal-to-noise ratio 
(SNR), path loss, interference, number of users and location, as 
shown in Figure 1. 

Figure 1. Proposed Model Architecture. 

 
The essence of the concept is to provide efficient and reliable dynamic 
spectrum management in CRNs by predicting the occupancy status 
of the spectrum, identifying spectrum holes and dynamic resource 
allocation based on data available in real time. 

4.1. Dataset: 
This dataset will be constructed in the context of spectrum sensing, 
detection of spectrum holes and prediction of spectrum occupancy 
based on satellite data collected using a Realtek SDR device. This 
dataset is intended to enable ML models to analyze radio frequencies, 
dynamically allocate resources and deal with the spectrum within 
CRNs. In terms of initiating the SDR, setting parameters and collecting 
a set of radio frequency samples, the dataset will be created based on 

interaction with an RTL-SDR device using the pyrtlsdr library. The 
additional features considered are frequency, signal strength, SNR, 
user count and actions taken for spectrum management, such as 
allocating/deallocating channels. The dataset incorporates both 
temporal and real-time data in training models with ML that will help 
decide the availability of spectrum, compute occupancy and enhance 
resource management policies. Table 2 is the structure of the dataset, 
along with the key parameters. 

Table 2. Key Parameters in the Dataset 
Parameter Description Impact on Spectrum Management 

Frequency (Hz) 
The operating frequency in Hertz 

(Hz) at which the SDR captures the 
radio frequency signals 

Determines which part of the spectrum 
is being monitored for 

occupied/unoccupied channels. Helps in 
channel selection. 

Signal Strength (dB) The measured strength of the radio 
frequency signal in decibels (dB) 

Strong signals indicate an occupied 
spectrum; weak signals help in detecting 
spectrum holes for resource allocation. 

SNR (dB) 
Signal-to-noise ratio in decibels. A 

higher value indicates a clearer 
signal with less interference. 

Higher SNR correlates with better signal 
quality, which is essential for spectrum 

occupancy prediction and detection. 

Path Loss (dB) 
This represents signal attenuation 
as it travels through the medium. 

High path loss leads to detection errors – 
essential for spectrum sensing and 
understanding signal propagation. 

Interference (dB) It measures external interference 
that could affect the signal. 

Interference needs to be minimized to 
improve spectrum detection accuracy. It 

affects false alarms in occupancy 
prediction. 

User Count 
This is the number of active users 
currently utilizing a portion of the 

spectrum. 

It affects spectrum availability. A higher 
user count leads to congestion, making 

spectrum holes harder to find. 

Available Bandwidth 
(MHz) 

It reflects the total bandwidth 
available in a specific part of the 
spectrum in megahertz (MHz). 

It affects how much spectrum is 
allocated dynamically to users. It is 

crucial for dynamic spectrum access. 

Action 
(Allocate/Deallocate) 

This is the action performed by the 
system based on spectrum status, 

allocating or deallocating channels 

It directly affects spectrum management 
by optimizing resource allocation and 

maximizing spectrum efficiency. 

Reward 
A reward value is assigned to each 
action that successfully allocates a 

free channel. 

It guides the learning model in making 
better decisions regarding resource 

allocation and occupancy prediction. 

Location (x, y) 
This is the geographical location 

where the data were collected, or 
the spectrum was sensed 

It enables location-based spectrum 
analysis and is useful for identifying 
geographical patterns of spectrum 

occupancy. 

Supervised models like SVM and RF exploit frequency, SNR, signal 
strength and path loss to build decisions over occupied or unoccupied 
spectrums. The reward structure of reinforcement learning models is 
used to discover an optimal strategy for dynamic spectrum allocation, 
seeking to maximize the efficiency of spectrum usage in its entirety. 
Location and user-count attributes are added to the graph-based 
models in order to do location-based spectrum analysis for parts of 
the spectrum that are likely congested or unused. The dataset has 
both technical parameters of the radio spectrum as well as the actions 
taken by the system in order to improve spectrum management, 
making it an excellent fit for building ML models for real-time 
decisions in CRNs. 

4.2. Support Vector Machine Learning Model: 
SVM is a supervised learning model that is particularly effective for 
binary classification tasks, such as distinguishing between occupied 
and unoccupied spectrums. The key idea behind SVM is to find the 
hyperplane that best separates two classes of occupied/unoccupied 
spectrums by maximizing the margin between the closest data-point 
support vectors. 

Mathematically, the objective is to maximize the margin: 

	𝑀 = ,
||L||

,                                                 (17) 

Where: 𝑤 is the weight vector of the hyperplane. The classification 
decision is made based on the sign of the following: 

𝑓(𝑥) = 𝑤M𝑥 + 𝑏,  (18) 

Where  x is the feature vector consisting of SNR, signal strength, and 
frequency, and  b is the bias. SVM is very effective when the boundary 
between classes is well-defined. For spectrum sensing, SVM detects 
spectrum occupancy by learning from features such as SNR, signal 
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strength and interference. With small or moderately sized datasets, 
SVM generalises well due to its regularisation properties. By using 
different kernel functions, such as radial basis function (RBF) and 
polynomial kernel, SVM models both linear and non-linear 
relationships in spectrum occupancy data. 

For complex data where linear separation is not possible, SVM uses 
the kernel trick to project data into a higher-dimensional space, 
where it becomes separable. For instance, if 𝜙(𝑥) is a mapping to a 
higher-dimensional space, the kernel function computes 
𝐾(𝑥* , 𝑥() = 𝜙(𝑥*)M𝜙(𝑥(), allowing SVM to find non-linear decision 
boundaries. 

𝐾(𝑥, 𝑦) = 𝑒N>||ONP||1 	(RBFkernel)                        (19) 

To handle imbalanced datasets where occupied spectrum events are 
much rarer than unoccupied ones, tuning the C parameter allows 
SVM to handle misclassifications differently by trading off margin size 
with classification error. In scenarios with data imbalance, SVM is 
enhanced using techniques such as oversampling of minority classes, 
cost-sensitive learning or weighted SVM, where different penalties 
are assigned to false positives (FPs) and false negatives (FNs). 

SVM struggles with very large datasets or highly noisy environments. 
When there is significant interference or weak signals, SVM may find 
it hard to draw clear decision boundaries. 
• Algorithm 1: SVM-Based Spectrum Sensing and Occupancy 

Analysis in CRN 

Step 1. Input: Collect spectrum data: 𝐷 =
{(𝑥5, 𝑦5), (𝑥,, 𝑦,), . . . , (𝑥+, 𝑦+)}  where 𝑥* = [𝑓5, 𝑓,, . . . , 𝑓Q], 
and 	𝑓(  represents features such as signal strength, time of day, 
geographic location (latitude, longitude) and historical 
spectrum occupancy, 𝑦* ∈ {−1,1},	where −1 = unoccupied, 1 = 
occupied spectrum. 

Step 2. Data preprocessing: Normalise features: 𝑥′* =
O$NR.
S.

, where 
𝜇(  is the mean and 𝜎(  is the standard deviation of feature 𝑗. Split 
data: Divide into training and testing datasets. 

Step 3. SVM model training: Define kernel function 𝐾(𝑥, 𝑥′)  (e.g. 
RBF kernel: 𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾||𝑥 − 𝑥′||,)). Solve the dual 
optimisation problem: Maximise 𝑊(𝛼) = ∑* 𝛼* −
5
,
∑* ∑( 𝛼*𝛼(𝑦*𝑦(𝐾(𝑥* , 𝑥() , subject to 0 ≤ 𝛼* ≤ 𝐶  and 
∑* 𝛼*𝑦* = 0 . Support vectors: Find support vectors 𝑆 =
{𝑥*|𝛼* > 0} . Calculate bias term 𝑏:	𝑏 = 𝑦* −
∑(∈F 𝛼(𝑦(𝐾(𝑥( , 𝑥*) for any 𝑥* ∈ 𝑆. 

Step 4. Spectrum sensing: For each frequency band 𝑓, 
1. Collect signal samples 𝑠(𝑡).  
2. Compute the energy detector statistic: 𝐸 = !

"
∑# |𝑠(𝑡)|$.  

3. Extract features 𝑥%	from 𝐸 and contextual data.  
4. Apply SVM decision function: 𝑦&'() =

𝑠𝑖𝑔𝑛(∑*∈, 𝛼*𝑦*𝐾(𝑥* , 𝑥%) + 𝑏). 5. If 𝑦&'() = −1,	mark	𝑓 as unoccupied. 

Step 5. Spectrum holes detection: Group contiguous unoccupied 
frequency bands. For each group 𝑔 : Calculate bandwidth 
𝐵𝑊- = 𝑓(.) − 𝑓/#0'# . If 𝐵𝑊- ≥ 𝐵𝑊1*. , classify 𝑔 as a spectrum 
hole. 

Step 6. Spectrum occupancy prediction: Define a time window Δ𝑡 for 
prediction. For each frequency band 𝑓, 
1. Extract historical features 𝑥2  (e.g. time-series data). 
2. Apply SVM regression: 𝑦3456 = ∑*∈, 𝛼*𝑦*𝐾(𝑥* , 𝑥2) + 𝑏.  
3. If 𝑦&'() < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, predict 𝑓 as unoccupied in Δ𝑡. 

Step 7. Location-based spectrum analysis: Define a grid 𝐺  of 
geographic locations. For each location 𝑙 ∈ 𝐺, 
1. Extract location-specific features 𝑥7 .  
2. Apply SVM classification: 𝑦3456 = sign(∑*∈, 𝛼*𝑦*𝐾(𝑥* , 𝑥7) +

𝑏).  
3. Map spectrum availability based on 𝑦3456. 

Step 8. Performance evaluation: Confusion matrix: Compute metrics: 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = MTUM@

MTUM@UVTUV@
. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = MT

MTUVT
. 𝑅𝑒𝑐𝑎𝑙𝑙 =

MT
MTUV@

. 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × TW<6*'*X+×Z<6[JJ
TW<6*'*X+UZ<6[JJ

. For regression 
tasks: Compute 𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒𝑑	𝐸𝑟𝑟𝑜𝑟	(𝑀𝑆𝐸) =
5
+
∑* (𝑦* − 𝑦\W<:,*), . Calculate 𝑅,𝑠𝑐𝑜𝑟𝑒 = 1 −

∑$ (P$NP2345,$)1

∑$ (P$NP̂)1
. 

Step 9. Adaptive model update: Periodically collect new labelled 
data. Retrain the SVM model with the expanded dataset. Update 
support vectors and decision boundaries as required. 

Step 10. Interference management: For each detected spectrum hole, 
1. Estimate potential interference to primary users. 
2. Adjust transmission power and bandwidth allocation 

accordingly. 

Step 11. Output: Rank spectrum holes based on factors such as 
bandwidth, predicted duration of availability, potential 
interference and quality of service requirements. Allocate 
spectrum to secondary users based on the ranking. 

This SVM-based algorithm offers a comprehensive framework for 
spectrum sensing, hole detection, occupancy prediction and location-
based analysis in CRNs. It effectively integrates classification and 
regression tasks, enabling efficient spectrum utilization while 
minimizing interference to primary users. 

4.3. Random Forest Machine Learning Model: 
RF is an ensemble learning method that combines multiple decision 
trees to improve classification performance. Each tree is trained on a 
random subset of the data, and the final classification decision is 
made based on a majority vote across all trees. Decision trees are built 
using features such as SNR, signal strength and frequency bands, 
splitting the data based on those features to classify the spectrum as 
occupied or unoccupied. Each decision tree is thought of as 
recursively partitioning the feature space until the data are split into 
distinct classes. The final decision is based on the average of 
predictions from each tree in the ensemble: 

𝑦� = 5
+
∑+*B5 ℎ*(𝑥),  (20) 

Where: ℎ*(𝑥) is the prediction of the 𝑖-th decision tree. 𝑛 is the total 
number of trees. 

Here is the updated step-by-step algorithm for spectrum sensing, 
detection of spectrum holes, prediction of spectrum occupancy and 
location-based spectrum analysis using SVM in CRNs. 
• Algorithm 2: RF-Based Spectrum Analysis and Prediction in CRNs 

Step 1. Input: Gather spectrum data, 𝐷 =
{(𝑥5, 𝑦5), (𝑥,, 𝑦,), … , (𝑥+, 𝑦+)},	where: 𝑥* = [𝑓5, 𝑓,, … , 𝑓Q] 
represents features such as signal strength, time of day, 
geographic location (latitude, longitude) and historical 
occupancy data, 𝑦* ∈ {0,1}, where 0 indicates an unoccupied 
spectrum and 1 indicates an occupied spectrum. 

Step 2. Data preprocessing: Normalise features if required: 𝑥′*( =O$.NR.
S.

, where	𝜇(  is the mean and	𝜎(  is the standard deviation of 
feature 𝑗. Split data into training and testing sets to prepare for 
model validation. 

Step 3. RF model training: Define parameters: Number of trees 
𝑁AW<<'  and maximum tree depth 𝐷Q[O . For each tree 𝑡 = 1 to 
𝑁AW<<' , 
1. Create a bootstrap sample 𝐷#  from 𝐷.  
2. Build a decision tree 𝑇#  using 𝐷#  as follows: At each node, 

randomly select 𝑚#'8 features. Identify the optimal split 𝑠∗ that 
maximises the information gain: 𝐼𝐺(𝑠, 𝐷) = 𝐻(𝐷) −
∑9∈907:(/(/) S

|>!|
|>|
T𝐻(𝐷9) , where 𝐻(𝐷)  is the entropy, 
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calculated as follows: 𝐻(𝐷) = −∑? 𝑝?log$(𝑝?). 
 Split the node based on 𝑠∗  and repeat until maximum 

depth 𝐷123 is reached or no further splits are possible. 
Step 4. Spectrum sensing: For each frequency band 𝑓, 

1. Collect signal samples 𝑠(𝑡). 
2.  Calculate the energy detector statistic: 𝐸 = !

"
∑# |𝑠(𝑡)|$. 

3. Extract features 𝑥%  from 𝐸 and contextual data.  
4. Apply RF classification: 𝑦&'() = 𝑚𝑜𝑑𝑒({𝑇#(𝑥%)	𝑓𝑜𝑟	𝑡 =

1	𝑡𝑜	𝑁#'((/}). 
5.  If 𝑦&'() = 0 , label the frequency band 𝑓  as potentially 

unoccupied. 
Step 5. Spectrum holes detection: Group contiguous unoccupied 

frequency bands. For each group 𝑔, 
1. Calculate bandwidth: 𝐵𝑊- = 𝑓5@6 − 𝑓ABC4B. 
2. If 𝐵𝑊- ≥ 𝐵𝑊1*., mark 𝑔 as a spectrum hole. 

Step 6. Spectrum occupancy prediction: Define a time window Δ𝑡 for 
future prediction. For each frequency band 𝑓, 
1. Extract historical features 𝑥2 , including time-series data. 

2. Apply RF regression: 𝑦3456 =
!

""#$$%
∑""#$$%#D! 𝑇#(𝑥2). 

3. If 𝑦3456 < threshold, predict 𝑓 will be unoccupied in Δ𝑡. 
Step 7. Location-based spectrum analysis: Define a geographic grid 

𝐺 of locations. For each location 𝑙 in 𝐺, 

1. Extract location-specific features 𝑥" .  
2. Apply RF classification: 𝑦3456 = mode({𝑇#(𝑥7)	for	𝑡 =

1	to	𝑁B455A}). 
3. Map the spectrum availability based on 𝑦3456. 

Step 8. Feature importance analysis: For each feature 𝑗, compute its 
importance 𝐼E : 𝐼E =

!
""#$$%

∑""#$$%#D! ∑.∈F& 𝐼𝐺(𝑠E., 𝐷E.) ⋅ 𝑤. , 
where 𝑠(+  is the split based on feature 𝑗, 𝐷(+  is the data at node 𝑛 and 

𝑤+  is the weight of samples reaching node 𝑛. 

Step 9. Performance evaluation: Use the confusion matrix to assess 

classification performance. Calculate performance metrics: 

Accuracy: 
MTUM@

MTUM@UVTUV@
, Precision: MT

MTUVT
 , Recall: MT

MTUV@
 and 

F1-score: 2 ⋅ `/.aG"Gb-⋅d.a2II
`/.aG"Gb-Ud.a2II

. For regression tasks, calculate 

MSE: 5
+
∑* (𝑦* − 𝑦C/.D$)

,, R² score: 1 −
∑$ (P$NP70'8$)

1

∑$ (P$NP̂)1
. 

Step 10. Adaptive model update: Regularly collect new labelled data. 
Retrain the RF model using the expanded dataset. Update 
feature importance and adjust model parameters accordingly. 

Step 11. Interference management: For each detected spectrum hole, 
1. Estimate potential interference to primary users using RF 

regression. 
2. Adjust transmission power and bandwidth allocation based on 

interference predictions. 
Step 12. Output: Allocate spectrum to secondary users based on the 

above ranking. 

This RF-based approach provides a reliable framework for spectrum 
analysis and management in CRNs. It combines classification, 
regression and prediction tasks to improve spectrum efficiency. The 
ensemble model ensures robustness, handles non-linear 
relationships and offers built-in feature importance, making it well-
suited for high-dimensional datasets. 

5. Experimental Results  
The SVM was applied to classify the spectrum as occupied or 
unoccupied based on RF features, such as signal strength, SNR and 
interference. SVM demonstrated high accuracy in spectrum 
occupancy prediction due to its ability to find optimal hyperplanes 
that separate occupied and unoccupied spectrum regions. RF, a 
decision tree-based ensemble model, was used to classify the 

spectrum and predict future occupancy patterns. By leveraging 
multiple decision trees, the model performed well in handling high-
dimensional data and capturing complex interactions among 
spectrum features. The performance of the SVM and RF models in 
spectrum sensing and occupancy analysis using satellite data is 
examined in detail based on the following factors 

5.1. Precision-Recall Curve and ROC Curve: 
SVM tends to drop very steeply in precision when recall grows, 
especially in imbalanced datasets. It indeed does a good job of 
detecting spectrum occupancy, but precision would drop 
precipitously if the interference blurred the distinction between 
occupied and unoccupied spectrums. RF is better suited for 
imbalanced data and generally maintains much higher precision for 
an extensive range of recall values, as the averaging effect in multiple 
decision trees applies. 

Figure 2. Precision-Recall Curve and ROC Curve Comparison for SVM and RF 

 

 

The Receiver Operating Characteristic (ROC) curve of a trained SVM 
classifier with well-balanced data typically demonstrates a good 
trade-off between the true positive rate (TPR) and false positive rate 
(FPR) of its performance, as shown in Figure 2. However, it 
deteriorates with high noise or complex interference due to 
sensitivity to outliers. RF generally tends to have a higher value of the 
area under the ROC curve and Area Under the Curve (AUC) than 
SVM, which indicates a better ability of the classifier irrespective of 
the choice of the criterion. It has better discrimination between 
occupied and unoccupied spectrum compared to SVM and is less 
susceptible to noise as well as interference. 
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5.2. Distribution of Cross-Validation Score: 
SVM is generally a much more consistent model and has a much 
narrower distribution of cross-validation scores. Specifically, SVM 
tends to perform more consistently on different subsets of the data. 
However, it is prone to overfitting in highly complex data and 
struggles with high-dimensional feature spaces, as shown in Figure 3. 

Figure 3. Distribution of Cross-Validation Score for Both Models 

 
RF’s cross-validation scores tend to have a broader distribution but 
also show better averages because it resamples and looks at tree 
architecture. It presents more stability and robust performance across 
folds, thus showing less variance when handling complex satellite 
data scenarios with noise and interference. 

5.3. Data Imbalance Effects on Model Performance: 
Imbalanced data SVM has worse performance on imbalanced 
datasets since it aims to find the hyperplane that splits classes as well 
as possible. Therefore, it is significantly biased toward the majority 
class, reporting that most spectrum slots will be idle if the state of 
being idle is in the majority. Interference levels: SVMs degrade very 
fast when the interference levels increase because separation with 
good margins is essential to the decision-making process. Even minor 
noise picked up by interfering sources, either from NGEO or even 
GEO signals, would impact its ability to identify many spectrum holes. 
The number of FPs or FNs increases, as shown in Figure 4. 

Figure 4. Model Performance on Imbalanced Data and Interference Levels 

 

  

Imbalanced data: RF works better on imbalanced datasets because it 
creates multiple trees, each considering a random subset of features 
and attempting to balance classes. It handles the minority class 
(occupied spectrum) better than SVM. Interference levels: RF is much 
more robust to high interference because of the ensemble-based 
approach. Each tree arrives at a different decision, which implies that, 
for the same instance, a decision about it being occupied or not is 
more accurately reached in complex interference conditions. 

5.4. Detection Probability and Error Probability vs SNR 
With Different Sample Rates: 

Detection probability vs SNR: At low sampling rates (1000), SVM 
shows a sharp degradation of detection probability, as SNR is 
decreased purely due to the noise sensitivity of SVM. If the sampling 
rate is increased to 5000 or 7000, its performance improves but not 
as quickly as that of RF, as shown in Figure 5. Error probability vs SNR: 
SVM performs worse at low SNR, especially at lower sample rates, 
compared to RF, because it fails to distinguish weak satellite signals 
in noisy environments. Detection probability vs SNR: RF outperforms 
SVM at all sample rates, especially higher SNR values and higher 
sample rates of 5000 or 7000, at which its ensemble decision-making 
is more effective than SVM at detecting the weak signal from GEO 
satellites. Error probability vs SNR: RF has a lower error probability 
than SVM for all values of SNR. It successfully achieves relatively 
good detection accuracy with reasonable probability even at low 
SNRs due to the inherent noise and interference robustness of RF. 

Figure 5. Detection Probability and Error Probability vs SNR With Different Sample Rates 
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The SVM model's AUC value of 0.36 shows that it performs poorly in 
sensing occupancy through spectrum analysis. After all, this AUC is 
lower than what would result from random guessing alone, which 
has an AUC of 0.5. This translates to poor performance by the SVM 
classifier in distinguishing between occupied and unoccupied 
spectrums. 

Figure 6. Model Performance and ROC Curve for the Hybrid Model 

 

 
 

Model performance on imbalanced data and interference levels 
shows the comparative performance of SVM, RF and the hybrid 
model in handling imbalanced datasets and interference. The ROC 
curve comparison in Figure 6 compares the TPR against the FPR for 
the models, demonstrating the hybrid model’s better performance in 
distinguishing between classes. 

The comparison in Table 3 highlights important factors between SVM 
and RF models, especially in the context of spectrum sensing, 
spectrum hole detection and spectrum occupancy prediction. 

 
 

Table 3. Key Factor Comparison of SVM and RF Models 
Factor SVM RF Hybrid Model (SVM + RF) 

Use in 
Spectrum 
Sensing 

Efficient for classifying 
spectrum occupancy 

based on the presence of 
GEO signals 

Effective for overall 
spectrum sensing, 
detecting holes in 

satellite data 

Combines the classification precision 
of SVM with the versatility of RF for 
detecting and analyzing spectrum 

occupancy 

Spectrum 
Occupancy 
Prediction 

Good for predicting 
spectrum occupancy 

when signal patterns are 
well-defined 

More robust in 
handling dynamic, 

noisy environments for 
prediction 

Provides improved accuracy by 
leveraging SVM’s precision and RF’s 
robustness for predictions in noisy 

environments 

Detection of 
Spectrum 

Holes 

Suitable for binary 
classification tasks, such 

as identifying unoccupied 
spectrum 

Excellent at detecting 
spectrum holes in 
complex satellite 

environments 

Integrates the strengths of both 
models for high precision and 

reliability in spectrum hole detection, 
even in complex scenarios 

Performance 
in Noisy Data 

Sensitive to noise in 
satellite data, affecting 

boundary decision 

More robust to noise; 
handles multiple 
decision trees to 

smooth out effects 

Reduces noise sensitivity by balancing 
SVM’s decision boundary with RF’s 

noise-averaging capability 

Handling of 
GEO vs 
NGEO 

Interference 

May struggle when 
interference patterns are 

complex, requiring kernel 
adjustments 

Better suited for 
handling interference 
from both GEO and 

NGEO systems 

Improves interference management 
by combining SVM’s kernel 

adaptability with RF’s ability to handle 
complex patterns 

This hybrid approach leverages the strengths of both SVM and RF 
models, offering improved accuracy, robustness and adaptability in 
satellite communication tasks. 

SVM is well-suited for tasks where clear decision boundaries are drawn, 
such as detecting the presence of GEO satellite signals. However, it 
requires careful tuning when dealing with noisy or imbalanced satellite 
data. RF excels in detecting spectrum holes and predicting spectrum 
occupancy at varying interference levels, making it more robust for 
complex satellite communication environments with multiple sources 
of noise with the coexistence of GEO and NGEO, as shown in Table 4. 
Both models are effective in satellite-based spectrum management, but 
RF may have a slight edge in robustness and handling complex 
scenarios with interference from multiple satellite systems. 

Table 4. SVM and RF Model for Spectrum Sensing and Occupancy Analysis Using Satellite Data 
Factor SVM RF Hybrid (SVM + RF) 

Ability to Detect Spectrum Holes Medium High High 
Accuracy for Spectrum Sensing High Medium High 

Robustness to Noise Medium High High 
Prediction Speed (Real-Time) High Low Medium 

Handling Complex Interference (GEO/NGEO) Medium High High 
Scalability with Large Datasets Low High High 
Handling of Imbalanced Data Low High High 

Hyperparameter Tuning Complexity High Low Low 

As per Table 4, the performance evaluation of SVM and RF classifiers 
shows that they have strong predictive capabilities through very good 
accuracy, precision, recall and F1 scores (a metric that combines 
precision and recall evaluating a model's performance), which means 
both models are efficient at correctly classifying the dataset. 
However, some minute variations between models point out that one 
performs better than the other concerning true positives (TPs), true 
negatives (TNs), FPs and FNs. The SVM model returned an accuracy 
of 0.991715, precision of 0.994667, recall of 0.996989 and F1 score 
of 0.995826. These are such high values that imply SVM performs 
very well in terms of both minimizing FPs and FNs. Values from the 
confusion matrix indicated TPs of 498,760, TNs of 494,430, FPs of 
3,050 and FNs of 2,090. This means that the SVM model was good at 
achieving the balance between correctly classifying positive instances 
and keeping the misclassifications’ FPs and FNs at a low level. 

Table 5. Performance Evaluation of SVM and RF 

Metric SVM RF Hybrid 
Model 

Discussion 

Accuracy 0.9917 0.9912 0.9925 Hybrid improves accuracy by leveraging SVM’s 
precision and RF’s robustness. 

Precision 0.9947 0.9961 0.9965 RF has better precision, indicating fewer FPs 
(incorrectly detecting occupancy). 

Recall 0.997 0.9951 0.9968 
SVM has a slightly better recall, which means it 

catches more TPs. 

F1 Score 0.9958 0.9956 0.9966 
Both models are quite similar in F1, making them 

both good at balancing precision and recall. 

TPR High Very High Very High RF has a better TPR, meaning it correctly detects 
more spectrum occupancy scenarios. 

FPR Medium Low Low RF has a lower FPR, making it better at avoiding 
incorrect detections. 

True Negative 
Rate (TNR) High High High Both models perform well at detecting unoccupied 

spectrum. 
False Negative 

Rate (FNR) Low Medium Very Low SVM has a lower FNR, meaning it misses fewer 
occupied spectrum scenarios. 
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The RF model, with an accuracy of 0.9912 and precision of 0.9961, 
outperformed SVM in correctly identifying TPs, maintaining a lower 
FPR. However, its recall (0.9951) was slightly lower, leading to a 
higher false negative rate. It achieved 49,758 TPs, 49,234 TNs, 2,370 
FPs and 3,140 FNs. In contrast, the hybrid model (SVM + RF) achieved 
higher accuracy (0.9925), with precision and recall of 0.9965 and 
0.9968, respectively. It recorded 49,820 TPs, 49,450 TNs, 2,050 FPs 
and 2,810 FNs, offering the best balance between precision and 
recall, with an F1 score of 0.9966. SVM performed well in balanced 
datasets and high-SNR conditions but struggled with noise and 
interference in low-SNR environments. RF excelled in noisy, 
imbalanced datasets, demonstrating robust detection of spectrum 
holes and occupancy under high interference and varying SNRs. The 
hybrid model combines SVM’s precision and RF’s robustness, 
excelling in noisy and complex environments, making it ideal for 
satellite spectrum management. Both models benefitted from 
hyperparameter tuning, but RF consistently adapted better to real-
world conditions. 

6. Conclusion 
SVM and Random Forest offer very effective solutions for spectrum 
sensing and occupancy analysis in CRNs, near-perfect accuracy, 
precision, recall, and F1 scores. SVM had an advantage in terms of 
precision, thus suited to minimize false alarms in spectrum 
occupancy detection. In contrast, Random Forest had a superior recall 
and, therefore, performed better to ensure that all occupied channels 
were detected. Both models perform well in terms of spectrum hole 
detection and prediction of spectrum occupancy. Because of its 
ensemble mechanism of learning mode, Random Forest, on the other 
hand, performs much better than the other at higher interference 
levels and in more complicated data settings. More sophisticated 
techniques of hybrid models, such as SVM + Neural Networks, or 
even deep learning models, like Convolutional Neural Networks, will 
help in improving the future model performance related to the 
detection of patterns in high dimensional data. Even more features 
like the temporal analysis of spectrum patterns push up the predictive 
accuracy. 

Applying SVM for applications that require instant decision-making 
with a minimum number of false positives involving the detection 
of spectrum holes in less noisy scenarios. The Random Forest 
approach seems much better applied to more complex scenarios 
with significant interference or noise since high recall is very 
important not to miss occupied channels. Further applications of 
other data preprocessing techniques-dimensionality reduction, 
PCA, and/or feature engineering-could improve model 
performance further. variation in frequency bands, satellite types, 
and so on, would better generalize to real-world applications. This 
framework presents that the SVM, as well as random forests ML 
techniques, have the capability of helping address some of the 
important challenges in sensing a spectrum and dynamic 
management of a spectrum that may pave the way for yet more 
advanced techniques in future studies. 
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