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ABSTRACT 
 

A simplified approach for model order reduction (MOR) is presented in this article using the balanced singular perturbation approximation (BSPA) approach 
applicable to large-scale linear dynamical (LSLD) systems. The reduced system was so designed to preserve complete parameters of the original system with 
reasonable accuracy, employing MOR. The approach is based on the retention of the dominant states of the system and comparatively less important ones. 
The reduced system comes from the preservation of the dominant states (say ‘desirable states’) of the original system and, thus, from stability to preservation. 
The key disadvantage of the Balanced Truncation approach is that the ROM steady-state values do not correspond with the higher-order systems. This 
drawback has been eliminated in the proposed approach, which leads to hybridisation of balanced truncation and singular perturbation approximation into 
a novel reduction method without the loss of retaining its dynamic behaviour. The proposed approach has been tested on LSLD systems and the results 
obtained show the efficacy of the approach. The methodology presented has been tested on two typical numerical examples taken from the literature review 
to examine the performance, precision and comparison with other available standard order reduction methods.  

 

1. Introduction 

The most important problem in an appearance on the complex 
activities of the higher dimension system is that it occurs in many 
areas, including complicated transport, ecological systems, electrical 
power equipment, aeronautics and hydraulics (Suman et al., 2020a; 
Sambariya et al., 2016; Sikander et al., 2015b; Antoulas et al., 2000).  
All these complex and large systems with conventional techniques 
are difficult to model. The combination of these is also considered to 
be big (large) if it wishes to be detached for each numerical 
measurement to many structured machinery or small structures for 
practical purposes (Suman et al., 2020b; Mohamed, 2018; Boley and 
Datta, 1997). Then, perhaps a system is complex and wide enough to 
fail to generate the proper solutions with realistic computational 
efforts by conventional modelling, analysis, device design and 
approximation strategies (Suman et al., 2019; Willcox et al., 2002). 
Studying this physical system (Schilders, 2008) starts with structuring 
the model, which can be considered as an enthusiastic example of 
this kind of structure, which is motivated by a task of control in 
preparing and evaluating a model (Suman et al., 2019). We are 
presenting a high stage of negotiation on computing in this first 
segment, which is important for detailed incident model observations 
in perspective and industry implementation (Mohamed, 2018; 
Gugercin and Antoulas, 2006). 
Several MOR solutions were mainly provided in two ways, namely 
frequency and time domain (Sandbergr et al., 2004). Researchers' 
reduction techniques have both benefits and inconveniences. One 
common weakness in the methods is that even if the HOS is stable, 
the reduced-order system is unstable (Suman et al., 2019; Gupta et 
al., 2018; Sikander et al., 2015b) .The other drawbacks are the low 
precision in average ranges as well as high frequency and the non-
minimum phase characteristics (Cao et al., 2019;Benner et al., 2015). 
Based upon the dominant poles method, numerous mixed methods 
have been suggested by Singh et al. (2016). The continued method 
and time matching fraction expansion can produce stable systems 
models. In the literature search, there are numerous approaches for 
reducing models of higher-order dynamic systems, such as a the 
reduced-order model (ROM) algorithm, which was presented with a 

Pade approximation (Parmar et al., 2007; Mittal et al., 2004; 
Mukherjee et al., 1987; Shamash, 1974). Moore (1981) initially 
suggested a model order reduction of the state linear time-invariant 
system based on the theory of balanced realisation, in which the 
realisation term balanced is selected for the system state 
configuration and partitions of the modes (Fernando and Nicholson, 
1983a). The BT, reduced system obtained through a balanced 
realized model subsequently elimination of less controllable and less 
observable states. It has been found that the model so obtained does 
not retain the steady-state and DC gain of the LSLD system. Vincenza 
et al. (1982) noted that a weak subsystem removed can be used to 
preserve the steady-state gain of the balanced truncation using a 
singular perturbation approximation approach (Huang, et al., 2013; 
Benner et al., 2010; Škatarić et al., 2010; Clapperton et al., 1996; 
Samar et al., 1995; Liu et al., 1989; Al-Saggaf and Franklin, 1988; 
Glover, 1984). Preserving the ratio of the steady-state output to the 
steady-state input (DC gain) of the balanced truncation model for the 
minimal system using a singular perturbation approach can be used 
to reduce the system to stable, minimum and internal balancing (Liu 
and Anderson, 1989b). 

In this paper, a hybrid approach with BT and SPA Approach applicable 
to the higher-order system with excellent DC gain matching was 
proposed. The advantage of the approach lies not only to the 
matching of steady-state but its applicability to the large-scale linear 
dynamical system as well, which has been confirmed over some test 
systems taken from published work to validate the efficacy of the 
proposed approach. 
The reduced-order approximation estimate for linear dynamic 
systems is approximated. Consider taking a -LTI SISO system of 
continuous-time as defined by 

( ) ( )
: :

( ) ( ) ( )

(  ) high

dx
A BAx t Bu t

dt
C D

y t Cx t D

d i

u t

n imens onal system


 = +




−

 =  
  = +

                      (1) 

where x    ℝ𝑛  is n-dimensional of the system state(1), y    
ℝ𝑝  is the system output of   , u(t) is the manage input, A ∈ 
ℝ𝑛×𝑛 , B ∈ ℝ𝑛×𝑚 , C ∈ ℝ𝑝×𝑛  and 𝐷 ∈ ℝ𝑝×𝑚 . The systems 
are stable and minimal in all states. x    ℝ𝑛 n is state variables of 
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higher order system equation (1) that it is a high-dimensional system, 
with n ranging from a few k n→  to thousands (n) as in control 
complex activities of the higher dimension system (Antoulas, 2005; 
Zhou et al., 1999; Boley and Datta, 1997; Moore, 1981a). 

Consider the n-dimensional dynamic system transfer functions of 
SISO (1) (Sikander et al., 2015a). Written in the form of transfer 
matrix is defined as 

1

( )
n

G s C sI A B D
−

= − +  
                       (2) 

1

0

0

( )

n
i

i

i

n
i

i

i

n s

G s

d s

−

=

=

=




                       (3) 

Where nth order higher order is represented by ( )G s . And, also, 

,i in d the known scalar coefficients parameters by the creative 
higher-order system and reduced-order Model. 

The higher-order system is to reduce to LSLD, and ROM can be 
written as follows  

( ) ( ) ( )
: :

( ) ( ) ( )

( )  

dx
A Br t A x t B u t r rr r r rdtr r

r

dim

t

en

x

s

r

i

C

o

C D
r ry t D u

mnaw l

t
r r r

r l sy eo st

  = + +    =
  = +  

−

                          (4) 

Where r is always less than n, so, to achieve the desired transfer 
function of HOS approaches and the reduction approaches to model 
typically diverge in the estimated error, which is reduced. The 
subscript ‘r’ is used during this brief to denote ROM-related 
parameters. The main aim of this role is to calculate the parameters of 

thr -order r always less than n, which is the order of the higher-order 
system, the equation (6).  

The desired reduced-order model ( ) ( )G s R s
r

=  has the following 
transfer matrix: 

1
( ) ( )R s C sI A B D

r n r r r
r

−= − +                                                   (5) 

1

0

0

( )

r
j

j

j

r
j

j

j

m s

R s

n s

−

=

=

=





                       (6) 

Where ( )R s  thr reduced order of higher order. And also ,
j j

m n the 
known scalar coefficients parameters of reduced-order model  
(Prajapati et al., 2019c). 

2. Balanced Singular Perturbation 
Approximation 

The reduction method for higher-order systems is explored here via 
the balanced singular perturbation approximation (BSPA). It is 
hybridization of BT and SPA.  In the BT method, all balanced systems 
are separated into two parts as a slow and fast mode by defining the 
lower Hankel singular values (HSV) as fast mode, with the others 
defined as a slow mode. First, it is possible to obtain a ROM by setting 
the derivative of all fast mode states equal to zero. The steps of order 
reduction using BSPA approach are given below: 
Step 1: Let us consider a linear, time-invariable and asymptotically 
stable G(s) system with minimal realisation. 
The controllability grammian (CG) and the grammian observability 
(OG) of the system are as follows: 

It is well known that these grammians satisfy the following Lyapunov 

equations (9) and (10) to found the controllability grammian ( gC ) 

and observability grammian ( gO ): 

0

T
A T A

g
C e BB e d

  


=    (7) 

0

T
A T A

g
O e C Ce d

  


=    (8) 

0
T T

g g
AC C A BB+ + =   (9) 

0
T T

g g
A O O A CC+ + =   (10) 

A realisation (A, B, C, D) of the system ( )G s  is said to be internally 
balanced if  1 2 3, ,g g nC O Diagonal    = =  =  where  is a 
diagonal (and indefinite) matrix if such a realisation exists, and the 
respective system energy is indicated here. These singular values are 
normally ordered for convenience to truncate the state 
corresponding to smaller Hankel singular values as

1,2,... 1.
1,

i n
i i

  = −
+

(López-Caamal and Marquez-Lago, 2014; 
Segalman, 2007; Gugercin et al., 2004; Marsden et al., 2002;  Zhou et 
al., 1999; Boley and Datta, 1997; Moore, 1981a). 

2.1. Assumption: 

The nth-order dimensional system is an asymptotically stable system 
and also minimal. Moreover, the state-space system equation (1) or 
the pair ( , )A B  state is controllable if, and only if, the n × nm state 
controllability matrix and pair ( , )A C are observable in the np × n 
observability matrix (Moore, 1981).  
According to the above statement, both grammians are a positive 
definite and unique symmetric matrix explanation to the couple of 
grammians since their implementation is minimal (Imran et al., 2014; 
Gugercin et al., 2004; Zhou et al., 1999). 
Step 2: Determination of Hankel singular values (HSV): Obtain 
Hankel singular values (HSVs) of the system by finding the square 
root of the eigenvalues of the product of OG and OG. 

( ) , , , ,
1 2 3 1

HSV C O
i g g r r n

       = =  
+ 

                       (11) 

Where  is called the Hankel singular value of the nth mode and i
is the real diagonal eigenvalue of the matrix. 
It provides a measure of most controllable/observable state. 
Compute the Hankel singular values (HSV) of the dynamic system. 
The singular Hankel values measure each state's contribution to the 
input/output behaviour in state coordinates that equalise the input-
to-state and output energy transfers. In addition, it indicates the 
desired and optimal order reduction of the original system. It is also 
the square root of the eigenvalues of controllability grammian and 

observability grammian ( g gC O ) (Rowley, 2005; Antoulas, 2005; 
Sikander et al., 2017). 
The Cholesky factor (CF) problem of the positive–definite symmetric 
is frequently initiated using CF factorisation (Boley and Datta, 1997; 
Pernebo et al., 1982). The lower triangular matrices (CF) cQ  and 

Q
o

 of controllability grammian gC  and observability grammian 

gO  are determined as (López et al., 2014; Boley and Datta, 1997; Al-
Saggaf and Franklin, 1988). 

T

c g g
Q C C=                          (12) 

T

o g g
Q O O=                        (13) 

The singular value decomposition (SVD) T

o c
Q Q  is obtained as 
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follows (Boley and Datta, 1997; Liu et al., 1989; Enns, D.F., 1984) 

( ) *T

o c
SVD Q Q U V=   (14) 

Where, U  and V are right and left vectors, known as orthogonal 
columns matrix. By using a non-singular matrix W (transformation) 
the model can be transformed into a balancing model with help of 
transformation matrix, which can be attained as follows ( Imran et al., 
2014; Gugercin, 2008; Zhou et al., 1999; Boley and Datta, 1997). 

1

2

c
W Q V

−

=    (15) 

 1 2 3
, ,

n
Diagonal     =     (16) 

Then the system with coefficient matrix 

(
1

WAW
−

, WB ,
1

CW
−

)  

Where W is a non-singular Similarity transformation matrix.  

In brief, the following transformation obtained a reduced order 
model to balanced system.  

1

1( )
Bal

WAW WB
G s

CW D

−

−

 
=  
  

                         (17) 

( )
A B

B B
G s

B C D
B B

Balanced system

 
 =
 
 

                            (18) 

At this point, we can partition the system's balanced realisation 
( , , , )

B B B B
A B C D  and retain the larger singular values of the system that 

correspond to the strongly controllable and observable states of the 
system. 

Now, partition the balanced realisation and the grammian   
conformal as  

0
11 1 22 2 1

:
0 0

1 2 2

A B A B

C D C

Strong Subsyustem Weak Subsystem

     
= +      

          

− −

          (19) 

Where 
11A  and 

1 are ( )r r r less thann matrices. 

We call this reduced order model a balanced system approximation 
of direct-truncation (DT). There are some well-known results on the 
approximation (Liu and Anderson, 1989a; Moore, 1982). 

2.2. Lemma (Pernebo and Silverman, 1982): 

The subsystems ( , , )
ii i i

A B C ( 1,2)i =  are internally balanced with 
grammian ( 1,2)

i
i = . For proof refer to Liu et al. (1989) and Enns 

(1984). 

2.3. Lemma (Pernebo and Silverman, 1982): 

The matrices 
ii

A  ( 1,2)i = are asymptotically stable, i.e.,  
Re( { }) 0

k ii
A  , for all k ( 1,2)i =  if 

1 and 
2  have no diagonal 

entries in common. Further, the subsystem 
11 1 1

( , , )A B C   is controllable 
and observable. For proof refer to Liu et al. (1989) and Enns (1984). 

Where 
k

  is eigenvalue and
ii

A  is a subsystem of the original system
( 1,2)i = . 
Let us now focus upon using singular perturbation technique to 
reduce the order of a linear time-invariant system. (Fernando et al., 
1982). Equation (19) is accomplished by a model of strong and weak 
subsystems that have been minimally realised. Singular perturbation 
Approximation (SPA) can also be used for Equation subsystems (19). 

In the model BT 'r' are kept balanced, strongly controlled and 
observed and even weakly controlled and/or observed. The weakly 
truncated state is used to (preserve) maintain the original system DC 
gain using SPA in the model (Kumar et al., 2012; Safonov et al., 1989). 
If the system is present in quick subsystems (Fernando and 
Nicholson, 1983), the transients associated with those subsystems 
will disappear quickly and, thus, the overall contribution to the 
system's impulse response is small. Therefore, fast subsystems are 
characterised by the relatively small diagonal elements of the weal 
matrix. The concerned researcher is referred to (Antoulas et al., 2000; 
Saksena et al., 1984; Kokotovic et al., 1976) for overviews of the 
technique. With a balanced realisation defined as follows: 

1 11 12 1 1

2 21 22 2 2

1

1 2

2

[ ]

BB

B

BA

B

C

x A A x B
u

x A A x B

x
y C C D u

x

       
= +        

        


 

= +  
 


                         (20) 

Or 

11 12 1

21 22 2

A A B

SlowTime

A A B

Fast Time

                          (21)  

These are fast and slow modes of SPA approaches (Gajic et al., 2001; 
Fernando et al., 1983b). 
Because the system is balanced, states conforming to smaller Hankel 
singular values 

2  represent the fast dynamics of the systems. Based 
on the concept of the singular perturbation approach (Kumar et al., 
2012), we set the derivative of the approximate 

2 system for all 
states to zero. 
By comparing the derivative of the weakly subsystem to zero below, 
the BSPA model can be achieved (Guiver, 2019; Kumar et al., 2012; 
Liu et al., 1989).  

Now, after implementation of the above steps to partition the 
balanced system ( , , , )

B B B B
A B C D  conformally as in (22). BSPA is 

define as given by ( ) ( )
BSPA r

G s G s= : 

1 1ˆ ˆ
11 12 22 21 1 12 22 2

( )
1 1ˆ ˆ

1 2 22 21 2 22 1

A A A A A B B A A B
G s

BSPA
C C C A A D D C A B

B

Balanced SPA

− − = − = −
 

= − −= − = − 
 

                (22) 

The proposed algorithm ˆ ˆˆ ˆ( , , , )A B C D  is an outcome of the 
hybridisation of standard balanced truncation techniques with SPA 
to use the merits of both methods. Techniques have been used for a 
higher-order system, which is discussed in the numerical example 
section. 

2.4. Error Analysis of Reduced Order Model: 

If ( )
r

G s  is 
th

r order reduced-order model of the system, then 
modelling error transfer function is given by  

 ( ) ( ) ( )
r

E s G s R s= −  

The actual (H-infinity) H


 norm error bound in the 
th

r order 
reduced model can be calculated by taking the infinity norm of the 
modelling error transfer function ( ( )rE s ). The actual and theoretical 
H


 norm error bounds are given by 

 ( ) ( ) ( )
r

E s G s R s
 
= − and

1

2
n

i

i r


= +

 
respectively. Moreover, the actual 

error bound is usually equal to or less than the theoretical error 
bound. It is also called the A priori error bound of the system 
(Antoulas, 2005). 
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Thus 
1

2
n

r i

i r

E 


= +

 
, an error bound is a measure of  how near and close 

the reduced model is to the original system and determined based on 
either an additive ( ) ( )error G s R s


−  or a multiplicative 

( ) ( )

( )

G s R s
error

G s


− . Sometimes, the method of additive error is 

sufficient to give a reasonable reduced order model, but the 
multiplicative error approach appears to better fit on systems with 
slightly damped poles and zeros. 

3. Numerical Experiments and Results 

3.1. Example: 
Let us consider a single-area power system model represented by 
following the 3rd order transfer function (Sonker et al., 2017; Saxena 
et al., 2013; Farid et al., 2010; Tan, 2010; Tan, 2009) with a non-
reheated turbine as 

 
3 3 2

250
( )

15.880 42.460 106.20
G s

s s s
=

+ + +      

3
( )G s  is written in the form of the state-space matrix 

   

15.880 42.460 106.20

1 0 0 ,

0 1 0

1 0 0 , 0 0 250 , 0
T

A

B C D

− − − 
 

=  
   
= = =       

 ( ) 2.0694 0.9222 0.0299A =  
Calculate the Hankel singular values (HSV) of the dynamic system. 
The singular Hankel values measure each state's contribution to the 
input/output behaviour in state co-ordinates that equalise the input-
to-state and output energy transfers. In addition, it indicates the 
desired and optimal order reduction of the original system. As per

( )A , first to 2nd singular values are significant here and, 
consequently, singular values have deteriorated speedily. Therefore, 
the order of reduction has been preferred as a second order. 

Then, finally, the 2nd reduced-order model is specified through this 
proposed approach (BSPA) as given by    

           

2

2 2

0.059720 1.2460 18.530
( )

2.6050 7.8730

s s
R s

s s

− +
=

+ +  
which has a Hankel norm less than the sum of singular values

, ,
1 2r r n   
+ + 

. 

Figure 1. Step response of the reduced-order models with the original system 

 

Figure 2. Step response of the reduced-order models with the original system for zoom 

 

Figure 1 compared the step response of the ROM with the original 
system. It has been noted that it is a close approximation of the 
original system. Furthermore, another picturisation (zoom) of both 
systems response to an evaluation of the transient behaviour 
comparison is depicted in Figure 2. Again, it proves the ROM to be a 
near (close) depiction of the original system. Further, the measured 
the accuracy and closeness of the reduced-order model with the 

original system in terms of the H  (H-infinity) norm. A modelling 
simulation error has also been calculated to show the effectiveness of 
the method respective to other existing methods, depicted in Table 1 
and Table 3.  

This is the validation of the proposed method. Note that the actual 
error-bound value is less than the error-bound theoretical values. The 
ROM is a close rapprochement of the system and compares its 
transient behaviour to the original system as well as other existing 
approaches, such as balanced truncation, improved BR and another 
composite approach. 

Table 1: A Comparison based on H Infinity Norms for Example 1 
MOR Approaches ROM H


(H-

infinity) 
Norm 

Proposed Approach (PA) 2
0.059720 1.2460 18.530

2
2.6050 7.8730

s s

s s

− +

+ +

 
0.0597100 

Balanced Truncation (BT) Method 
(Suman and Kumar, 2020b) 

0.80560 16.810

2
2.3910 7.3270

s

s s

− +

+ +

 0.0597948 

Composite of both (Balanced 
Realisation Method (BRM) and 

Stability Equation Method (SEM) 
(Suman and Kumar, 2020a) 

250

2
2.6050 7.8730s s+ +

 
40.219115 

Improved Balanced Realisation 
(IBR) 

(Prajapati and Prasad, 2019a) 
1.26750 17.2481

2
2.3910 7.3270

s

s s

− +

+ +

 
0.2639986 

Balanced Realisation (BR) And 
Factor Division Method (FDM) 
(Mixed)(Prajapati and Prasad, 

2018a) 

1.26720 17.2486

2
2.3910 7.3270

s

s s

− +

+ +

 
0.2638696 

Improved Routh Stability Method 
(IRSM) 

(Prajapati and Prasad, 2019b) 

250

2
15.880 35.7720 106.20s s+ +

 

 

0.2465308 

Improved Routh Approximation 
(Prajapati and Prasad, 2019b), 

Routh Approximation and Factor 
Division (Prajapati and Prasad, 

2019c) 

24.0220 8.6880

2
13.3790 7.9390

s

s s

+

+ +

 
3.2106626 

Pade Approximation (PA) 
Only (Saxena and Hote, 2013) 1.1910 18.920

2
2.708 8.0430

s

s s

− +

+ +

 
0.1259567 

Routh approximation (RA) 
Only (Saxena and Hote, 2013) 18.680

2
3.173 7.940s s+ +

 
0.6421096 

Stability Equation Method (SEM) 
(Prajapati and Prasad, 2018a) 

and Pade Approximation Method 
(Chen et al., 1980b) 

0.00460 249.9950

2
15.880 42.460 106.20

s

s s

− +

+ +

 
0.4771010 

Singular Perturbation 
Approximation (SPA) 

(K. V. Fernando and Nicholson, 
1982b)(Kodra et al., 2016) 

15.74

2
2.674 6.88s s+ +

 
0.4834986 

SEM (Chen et al., 1979), FDM and 
Stability Method 

(Gupta et al., 2018)(Sikander and 
Prasad, 2015a) 

Truncation Method 
(Smamash, 2007) 

250

2
15.880 42.460 106.20s s+ +

 
0.4771072 
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Routh Stability and Factor 
Division Method 

(N. Singh et al., 2006) 
39.3660 3344.70

2
35.8 584.80 1420.80

s

s s

+

+ +

 
1.9085503 

Routh Stability and Pade 
Approximation 

(Pal, 1979) 
15.7480 249.995

2
15.880 35.7720 106.20

s

s s

− +

+ +

 
0.4402325 

Pade Approximation and 
Differentiation Method 

(D, 2013) 
33.3210 249.995

2
2.2930 28.307 106.20

s

s s

− +

+ +

 
1.8151802 

Factor Division Method (FDM) 
(Lucas, 1983) 18.8170

2
2.594 7.9940s s+ +

 
0.5342067 

Routh- Pade Approximation 
(Prasad, 2000) 

2

24.022 8.6880

13.3790 7.9390s s

+

+ +
 

3.2106626 

Routh Stability Method 
(Rao et al., 1979) 250

2
15.88 35.772 106.20s s+ +

 
0.2465308 

Differential Method 
(Gutman et al., 1982) 250

2
5.293 28.307 106.20s s+ +

 
2.2237372 

3.2. Example 
Consider an example of 5th -order well-known transfer function of the 
stable linear system taken from (Prajapati and Prasad, 2018a)  

4 3 2
10s +82s +264s +396s 156.00

5 4 3 2
21 84 173 148 40.00s s s s s

+

+ + + + +         

5
( )G s  is written in the form of the state-space matrix  

   

-10.50 -42.00  -86.50 -74.00 -20.00

1 0 0 0 0

,0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0 , 5 41 132.00 184.50 78 ,

0

A

B C

D

 
 
 
 =
 
 
 
 

= =

=

      

 ( ) 1.7347 0.2171 0.0134  0.0075 0.0042A =     
( )A , Calculate the Hankel singular values (HSV) of the dynamic 

system. The singular Hankel values measure each state's contribution 
to the input/output behaviour in state coordinates that equalise the 
input-to-state and output energy transfers. In addition, it indicates the 
desired and optimal order reduction of the original system. As per 

( )A , first to 2nd singular values (SV) are significant ones and, 
consequently, singular values have deteriorated speedily. So, the 
order of reduction has been preferred as a 2nd order. 
 

Then, the 2nd reduced-order model is specified through this proposed 
approach as given by 

2
-0.0034470s +4.9550s 5.4010

( )
2 2

3.115 1.3850
R s

s s

+
=

+ +

 

Figure 3. Step response of the reduced-order models with the original system 

 
Figure 4. Step response of ROM with the original system for zoom 

 

Figure 3 compared the step response of the reduced-order model 
with the original system. It has been noted that it is a close 
approximation of the original system. Furthermore, another 
picturisation (zoom) of both systems response to assessments of the 
transient behaviour comparison is also depicted in Figure 4. Again, it 
proves the ROM to be a near (close) depiction of the original system, 
providing another way to measure the accuracy and closeness of the 
reduced-order model with the original system in term of the H

 (H-
infinity) norm. 
Also, a modelling simulation error calculated to show the 
effectiveness of the method respected to other existing methods is 
depicted in Table 2 and Table 3. This is the validation of the proposed 
method and notes that the actual error-bound value is less than the 
error-bound theoretical values. The ROM is a close rapprochement of 
the system and compares its transient behaviour to the original 
system as well as other existing approaches, such as balanced 
truncation and another composite approach. 

Table 2: A Comparison based on H Infinity Norms for example 2 
MOR Method Reduced Order Model (ROM) H  (H-

infinity) Norm 
Proposed method 2

-0.0034470s +4.955s 5.4010

2
3.1150 1.3850s s

+

+ +

 
1.7764e-015 

Balanced Truncation Method 
(Suman and Kumar, 2020b) 

10.061s 58.750

2
19.25 15.130s s

+

+ +

 
0.1003 

Routh approximation 
(Prajapati and Prasad, 2019c) 

2.45510 1.0340

2
0.98470 0.2662

s

s s

+

+ +

 
0.7786 

Balanced Truncation and Factor 
Division Methods 

(Prajapati and Prasad, 2018a) 

4.9380 5.210

2
3.0490 1.336

s

s s

+

+ +

 
0.0181 

Balanced truncation 
(Lall et al., 2002)(Sandberg and 

Rantzer, 2004)(Prajapati and Prasad, 
2018a) 

4.923 5.2150

2
3.049 1.3360

s

s s

+

+ +

 
0.0166 

 

Balanced residualisation 
(Prajapati and Prasad, 

2019b)(Moore, 1981)(Zhou et al., 
1999)(Enns, 1984) 

2
0.3450 4.9550 5.4001

2
3.115 1.385

s s

s s

− + +

+ +
 

0.3450 

Stability equation and factor division 
Methods 

(Chen et al., 1980a)(D. K. Sambariya 
and Prasad, 2013)(D. Sambariya and 

Arvind, 2016) 

369 156

2
167.997 148 40.00

s

s s

+

+ +

 
0.9218 

Routh approximation and Pade 
approximation 

(Lepschy and Viaro, 1982)(Shamash, 
1975b) 

2.45480 1.03822

2
0.98470 0.2662

s

s s

+

+ +

 
0.7804 

Pade approximation 
(Prasad, 2000)(Guillaume and 

Huard, 2000) 

4.64210 4.37899

2
2.6888 1.112280

s

s s

+

+ +

 
0.0717 

Stability equation and Pade 
approximation methods 

(Shamash, 1975b)(Chen et al., 
1980b)(D. Sambariya and Arvind, 

2016) 

369 156.00

2
167.997 148 40.00

s

s s

+

+ +

 
0.9218 

Differentiation method 
(Manohar and Sambariya, 

2016)(Gutman et al., 1982) 

5535s 9360.00

2
1038 3552 2400.00s s

+

+ +

 
0.5703 

Stability equation method 
(D. Sambariya and Arvind, 2016) 

369 156.00

2
167.997 148 40.00

s

s s

+

+ +

 
0.9218 

Routh stability 
(Krishnamurthy and Seshadri, 

1978)(Rao et al., 1979) 

310.6 156

2
128.2 123.1 40.00

s

s s

+

+ +

 
0.8701 

Modified factor division method 
(Lucas, 1986)(Parmar et al., 2007) 

5 5.1817

2
3.1259 1.3286

s

s s

+

+ +

 
0.0630 

Factor division 
(Prajapati and Prasad, 2018b) 

Pade approximation and modal 
methods 

(Shamash, 1975a) 

3.2475 1.950

2
1.50 0.50

s

s s

+

+ +

 
0.4626 

Truncation method 
(Smamash, 2007) 

369 156.00

2
173 148 40.00

s

s s

+

+ +

 
0.9640 
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Routh stability and Factor division 
methods 

(N. Singh et al., 2006) 

271.90 156.00

2
128.2 123.1 40.00

s

s s

+

+ +

 
0.9807 

Differentiation method 
(Manohar and Sambariya, 

2016)(Gutman et al., 1982) 

5535s 9360

2
1038 3552 2400s s

+

+ +

 
0.5703 

Time moment matching (MMM) 
method 

(Zakian, 1973) 

4.1340 3.90

2
0.8906 2.3947 1.00

s

s s

+

+ +

 
0.0717 

Pade approximation and 
Differentiation 

Methods 
(D, 2013) 

1360.8s 9360

2
1038 3552 2400s s

+

+ +

 
2.5617 

 
Table 3. A Comparative Summary of Frequency Domain Computations on basis of H-

infinity norm for Examples. 
Computation

s H
  (H-infinity) Norm 

Example 1- 3rd Original Order 
System 

Example 2 -5th Original Order 
System 

BR & 
FDM 

Mixed 

 BT  Proposed 
Approach 

(PA) 

BR & 
FDM 

Mixed 

 BT   Propose
d 

Approa
ch (PA) 

( )G s


  
H-infinity 

2.8496555 3.8996 

Theoretical  
H-infinity 

value 

2
2

1
i

i r

 
= +

 

For n=2 
(ROM) 

A Priori Error 
Bound 

0.0598 0.2914 

Actual  
H-infinity  

( ) ( )G s R s


−  
Error Bound 

in Simulation 

0.26386
96 

0.059794
8 

0.0597100
0 

0.01810 0.0166
0 

1.7764
e-015 

Actual 
Relative Error 

Bound: 

( ) ( )

( )

G s R s

G s

−



 

0.09264
24 

0.020983
16 

0.0209534
10 

0.00464
10 

0.0042
56 

4.5553
e-016 

 

4. Discussion 

This article reveals the step response of the reduced model, and the 
original system is depicted in the figure above. All numerical 
experiments and Results have been carried out on the Intel ® CoreTM 
i7-8700 CPU @ 3.20 GHz and 8 GB memory using MATLAB R2019a 
(Academic Use) at the place of EED, MMMUT, Gorakhpur. The step 
responses of the original system and reduced-order model depicted 
in the figures of all examples are taken from the literature search. This 
figure shows that the reduced model is very close to the original 
system. This proposed method’s excellence in comparison to the use 
of the BT method and other published works has been justified 
through two test systems. The H

 modelling error has been also 
computed and results are depicted in Tables. It is seen to be an 
excellent precise approximation with a minor error between the 
original system and ROM. It is observed that the results obtained by 
the proposed method are far superior.  

5. Conclusion 

A new reduced-order model approach for reducing the order of large-
scale linear dynamic system has been proposed in this article. The 
proposed Balanced Singular Perturbation Approximation (BSPA) 

methodology is superior to any of the conventional methods or other 
mixed methods. Singular perturbation approximation from balanced 
truncation has reduced this process drawback. A BT and SPA 
approach to hybridisation has been used to effectively demonstrate a 
few examples of an LSLD system. Furthermore, the step response 
comparison shows that the ROM derived by the proposed approach 
offers a close approximation to the higher-order system. The 
responses are also compared in terms of an H-infinity norm. The 
proposed approach provides far superior results, which are justified 
by solving numerical examples taken from published work. This 
approach is more effective when successfully applied to a large-scale 
system. This procedure can be extended to the design of a state 
feedback controller, optimal, H- infinity controller etc.  
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