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ABSTRACT 
 

The problem of unconstrained optimization (UOP) has recently gained a great deal of attention from researchers around the globe due to its numerous real-life 
applications. The conjugate gradient (CG) method is among the most widely used algorithms for solving UOP because of its good convergence properties and 
low memory requirements. This study investigates the performance of a modified CG coefficient for optimization functions, proof of sufficient descent, and global 
convergence of the new CG method under suitable, standard Wolfe conditions. Computational results on several benchmark problems are presented to validate 
the robustness and efficacy of the new algorithm. The proposed method was also applied to solve function estimations in inverse heat transfer problems. Another 
interesting feature possessed by the proposed modification is the ability to solve problems on a large scale and use different dimensions. Based on the theoretical 
and computational efficiency of the new method, we can conclude that the new coefficient can be a better alternative for solving unconstrained optimization 
and real-life application problems. 
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1. Introduction 

Consider the following optimization problem: 

min 𝑓(𝑥),          𝑥 ∈ 𝑅𝑛                                          (1.1) 

where 𝑓: 𝑅𝑛 → 𝑅  is a smooth and convex function satisfying the 
condition: 
𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦), 

for all 𝑥, 𝑦 ∈ 𝑅𝑛,  𝛼, 𝛽 ∈ 𝑅,  and 𝛼 + 𝛽 = 1,   𝛼 ≥ 0,   𝛽 ≥ 0. 
Convex optimization deals with minimizing specific convex functions 
over convex sets, while the non-convex optimization deals with 
problems where the objective function is non-convex. These 
problems are solved using local optimization methods that require an 
initial guess. This point significantly influences the performance of 
the objective value of the local solution. 
One of the widely used methods for solving (1.1) is the conjugate 
gradient (CG) method, which computes as follows: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,                                            (1.2) 

where 𝑥𝑘+1 is the new iterate and 𝛼𝑘 > 0 is generated by a suitable 
line search process through the search direction 𝑑𝑘 : 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 ,                  𝑑𝑘 = −𝑔𝑘                                  (1.3) 

where 𝛽𝑘  denotes the CG parameter that differentiates various CG 
formulas and 𝑔𝑘 = 𝛻𝑓(𝑥) is the gradient of 𝑓 (Yakubu et al., 2020; 
Malik et al., 2020). Generally, for  𝑘 = 0 , 𝑑0 = −𝑔0,  which 
represents the classical steepest descent direction. If 𝛼𝑘  satisfies the 
exact line minimization condition and 𝑓(𝑥)  is a strictly convex 
quadratic function, (1.2) and (1.3) will reduce to the linear CG method 
(Hager and Zhang, 2006). However, for the general nonlinear case, 
the parameter 𝛽𝑘  is computed using algorithms that do not satisfy 

the conjugacy, such as:  

 𝛽𝑘
𝐹𝑅 =  𝑔𝑘

𝑇𝑔𝑘 ‖𝑔𝑘−1‖2⁄ ,   (Fletcher and Reeves, 1964)       (1.4) 

 𝛽𝑘
𝑃𝑅 = (𝑦𝑘

𝑇𝑔𝑘+1) ‖𝑔𝑘‖2⁄ ,   (Polak and Ribiere, 1969)           (1.5) 

 𝛽𝑘
𝐷𝑌 = 𝑔𝑘+1

𝑇 𝑔𝑘+1 𝑦𝑘
𝑇𝑠𝑘⁄ ,   (Dai and Yuan, 2000)                   (1.6) 

 𝛽𝑘
𝐷𝐿 = 𝑔𝑘+1

𝑇 (𝑦𝑘 − 𝑡𝑠𝑘) 𝑦𝑘
𝑇𝑠𝑘⁄ ,    (Dai and Liao, 2001)               (1.7) 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘  and the parameter 𝑡 ≥ 0 . For a detailed 
discussion on advances in the conjugate gradient method, refer to 
Hager and Zhang (2006) and (Sulaiman et al. (2022).  
The nonlinear CG algorithm plays a significant role in solving large-
scale unconstrained, differentiable functions due to its simplicity and 
good convergence properties (Powell, 1984; Sulaiman et al., 2020; 
Mamat et al., 2020). Numerous studies have investigated the 
convergence of these classical CG methods. For instance, Zoutendijk 
(1970) studied the convergence of the Fletcher–Reeves (FR) method 
under exact line searches with the following condition: 

𝑔𝑘
𝑇𝑑𝑘 ≤ 𝑐‖𝑔𝑘‖2          𝑐 > 0.                       (1.8) 

By restricting 𝛽𝑘
𝑃𝑅𝑃  to be non-negative, Gilbert and Nocedal (1992) 

confirmed the global convergence of the 𝛽𝑘
𝑃𝑅𝑃  method under 

suitable conditions. For more convergence results on CG methods, 
refer to Wolfe (1969), Sulaiman et al. (2021a), Grippo and Lucidi 
(1997), Malik et al. (2021), Sulaiman et al. (2021b), Hestenes and 
Stiefel (1952), Kamfa et al. (2020), Deng and Wan (2015), and Awwal 
et al. (2021).  
Recently, Audu et al. (2020) developed a robust variant of the FR 
method by introducing a new term to the denominator for the 
classical FR method as follows:  

𝛽𝑘
𝑼𝑀𝑊 =  

‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 (𝑑𝑘−1−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−𝑔𝑘)

.                      (1.9) 
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The authors proved the decency property and established the global 
convergence under suitable conditions. 
One of the efficient and widely recognized variants of the CG 
algorithm is the three-term gradient algorithm (Liu and Du, 2019; 
Maulana et al., 2023), which is formulated by defining a new term as 
the classical CG search direction (1.3). Notes on the three-term CG 
method were first presented by Beale (1972). The author employed 
the classical 𝛽

𝑘
𝐻𝑆  method defined in Hestenes and Stiefel (1952) to 

construct the following 𝑑𝑘 :   

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 + 𝛾𝑘𝑑𝑡,                    (1.10) 

where 𝑑𝑡  denotes the restart direction and 𝛾𝑘 = 0  for 𝑘 = 𝑡 + 1 , 
and  

𝛾𝑘 =
𝑔𝑘

𝑇𝑦𝑡

𝑑𝑘
𝑇𝑦𝑡

,          𝑘 > 𝑡 + 1.                                         (1.11) 

In practice, this method is less effective and possesses finite 
termination properties (Hager and Zhang, 2006; Dai and Liao, 2001). 
In addition, Beale's method is not guaranteed to generate a descent 
direction under different line search procedures (Zhang et al., 2007). 
As a result of these shortcomings, Powell (1984) and McGuire and 
Wolfe (1973) improved the performance of the Beale (1972) method 
using an efficient restart strategy by imposing the following 
condition, 

𝑔𝑘
𝑇𝑑𝑘 ≥ 𝜑‖𝑔𝑘‖‖𝑑𝑘‖,                    (1.12) 

and the Powell Beale condition, 

|𝑔𝑘−1
𝑇 𝑔𝑘| < 0.2‖𝑔𝑘‖2,                    (1.13) 

on (1.10), which guarantees the descent condition. 
A recent study on the three-term CG method was presented by Zhang 
et al. (2007). The authors utilized the good convergence properties of  
𝛽𝑘

𝑃𝑅𝑃  to define a three-term CG method termed TTPRP, with the 
formula expressed as follows:  

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 + 𝜃𝑘−1𝑦𝑘−1,                   (1.14) 

where 𝜃𝑘 =
−𝑔𝑘

𝑇𝑑𝑘−1

‖𝑔𝑘−1‖2
. The authors extended the idea to 𝛽𝑘

𝐻𝑆  (TTHS) 
as follows: 

𝑑𝑘 = {
−𝑔𝑘 , if 𝑔𝑘

𝑇𝑦𝑡 < 𝜀1‖𝑔𝑘−1‖𝑟𝑠𝑘−1
𝑇 𝑠𝑘−1

−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 + 𝜃𝑘−1𝑦𝑘−1, otherwise                  
 

with 𝜃𝑘 =
−𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

 and 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1, 𝑟 ≥ 0, 𝜀1 > 0.  Zhang 
et al. (2007) showed that both methods satisfy the descent condition,  

𝑔𝑘
𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2, 

regardless of the line search procedure used, and further established 
the global convergence of TTPRP under modified Armijo conditions 
and the convergence of TTHS, which was studied under the standard 
Wolfe condition. Motivated by the idea of Zhang et al. (2007) and 
utilizing the efficacy modified FR parameter defined in (1.9), this 
study develops a new class of three-term CG methods for 
unconstrained optimization functions. 
The remainder of the paper is structured as follows. Section 2 
presents the method formulation and algorithm. In section 3, we 
establish the convergence of the proposed method under suitable 
Wolfe line conditions. Experimental results on a number of 
benchmark functions are presented in section 4 to demonstrate the 
robustness and efficacy of the new algorithm. In section 5, the new 
algorithm is applied to solve real-life application problems. Finally, 
the conclusion is presented in section 6. 
 

2. Three-Term Conjugate Gradient 
Algorithm 

This section presents the derivation process of the new three-term CG 
algorithm for optimization functions.  

2.1 New Three-Term CG Method: 
The proposed method is derived as follows:  
𝑑0 = −𝑔0, 

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 + 𝜃𝑘
(1)

𝑦𝑘−1,                      (2.1) 

and 

 𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 + 𝜃𝑘
(2)

𝑦𝑘−1,                    (2.2) 
where  

𝛽𝑘
𝑼𝑀𝑊 =  

‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 (𝑑𝑘−1−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−𝑔𝑘)

,                                       (2.3) 

and 

 𝜃𝑘
(1)

= −
𝑔𝑘

𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2
  and  𝜃𝑘

(2)
= −

𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘
𝑇(𝑦𝑘−1)

.                   (2.4) 

From (2.1)–(2.3), it is clear that 

𝑑𝑘
𝑇𝑔𝑘 = −‖𝑔𝑘‖2,                      (2.5) 

which implies that 𝑑𝑘  is a descent direction. It is also clear that 𝜃𝑘 =
0 if the exact minimization condition is applied. 
Algorithm 2.1 
Step 1: Initialization: 𝑥0 ∈ 𝑅𝑛 , 𝑑0 = −𝑔0 , set 𝑘 = 0. If ‖𝑔𝑘‖ ≤ 𝜀, 
then stop. Otherwise continue. 

Step 2: Compute 𝛽𝑘  by (2.3) 

Step 3: Compute 𝜃𝑘  by (2.4) i.e., 𝜃𝑘
(1) 

Step 4: Determine 𝛼𝑘  based on the following Wolfe conditions: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 ,                    (2.6) 

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥  𝜎𝑔𝑘
𝑇𝑑𝑘 ,                       (2.7) 

where 0 < 𝛿 < 𝜎 < 1. 
Step 5: Update 𝑥𝑘  based on (1.2) 
Step 6: Check if ‖𝑔𝑘‖ = 0, terminate. Otherwise, go back to step 2 
with  𝑘 = 𝑘 + 1. 
The proposed TTUMW method and the classic TTPRP formula have 
similar structures. However, the TTUMW contains a new coefficient, 
𝛽𝑘 , and a three-term parameter, 𝜃𝑘 , that differentiate the new 
method from other methods. 
It is mandatory to show that the direction 𝑑𝑘 , defined by (2.1) and 
(2.2), possess the descent properties before discussing the 
convergence results. 
Lemma 2.0 
Let 𝛽𝑘

𝑼𝑀𝑊 be defined by algorithm 2.1 where 𝑑𝑘  follows from (2.1). 
If 𝑔𝑘

𝑇𝑑𝑘−1 = 0, then  

𝛽𝑘
𝑈𝑀𝑊 ≤

‖gk‖2

‖dk−1‖2. 

Proof 
Begin with the following simplification and let 𝑔𝑘

𝑇𝑑𝑘−1 = 0 (Rivaie 
et al., 2012). 

𝛽𝑘
𝑼𝑀 =  

‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 (𝑑𝑘−1 − 𝑚 − 𝑔𝑘)

, 𝑚 =
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘  
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=  
‖gk‖2

‖dk−1‖2 − 𝑤 − dk−1
T gk

,   𝑤 =
‖gk‖

‖gk−1‖
dk−1

T gk 

≤
‖𝑔𝑘‖2

‖𝑑𝑘−1‖2.   

This completes the proof.  

Lemma 2.1 

Let the sequence {𝑥𝑘} follow from algorithm (2.1), 𝑑𝑘  from 
(2.1), and 𝜃𝑘  given as (2.4). Then, 

𝑔𝑘
𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2    ∀𝑘 ≥ 0. 

Proof 
From (2.1), (2.3), and (2.4), it follows that: 

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 + 𝑔𝑘

𝑇𝑑𝑘−1𝛽𝑘 − 𝑔𝑘
𝑇 .

𝑔𝑘
𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2 . 𝑦𝑘−1

≤  −‖𝑔𝑘‖2. 

This completes the proof.  

3. Convergence Analysis 

The convergence result of the new method would be studied based 
on the following assumption. 

Assumption 3.1  
(1) The function 𝑓  is bounded on 𝛺 = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} , 
where 𝛺 defines the level set. 

 (2) 𝑓 is smooth and bounded below on 𝑅𝑛 , and its gradient, 𝑔(𝑥), is 
Lipchitz continuous on the neighborhood 𝑁 of Ω. That is, for some 
𝐿 > 0, it implies: 

∀ 𝑥, 𝑦 ∈ 𝑁, ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖.                                  (3.1) 

For some positive constant 𝜇 , we have the following results, 
which come from Assumption 3.1: 

‖𝑔(𝑥)‖ ≤ 𝜇   ∀𝑥 ∈ Ω.                    (3.2) 

To prove Assumption 3.1, we begin by presenting the 
subsequent lemma with proof stemming from Zoutendijk 
(1970) and Wolfe (1969). 
Lemma 3.1 Consider 𝑥1  as the initial guess that Assumption 3.1 
holds true. For a CG algorithm of the form (1.2), with 𝛼𝑘  satisfying 
(2.6) and (2.7) and 𝑑𝑘  is a descent direction, then, 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2𝑘≥1 < ∞.                       (3.3) 

Proof  
From (2.6), we have 

𝑔𝑘
𝑇𝑦𝑘 = 𝑔𝑘

𝑇(𝑔𝑘+1 − 𝑔𝑘) ≥ (𝜎 − 1)𝑔𝑘
𝑇𝑑𝑘 , 

and after (3.1), it follows that  

(𝑔𝑘+1 − 𝑔𝑘)𝑇𝑑𝑘 ≤ 𝛼𝑘𝐿‖𝑔𝑘‖2.   

Combining the two inequalities will give 

𝛼𝑘 ≥
𝜎 − 1

𝐿
∙

𝑔𝑘
𝑇𝑑𝑘

‖𝑑𝑘‖2, 

which reduces to 

𝑓𝑘 − 𝑓𝑘−1 ≥ 𝑐
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2 ,                     (3.4) 

where 𝑐 = 𝛿(1 − 𝜎)/𝐿 . Summing up (3.4) and noting that 𝑓  is 
bounded below implies that (3.3) holds, and thus completes, the 
proof.        

3.1 Sufficient Descent Condition: 
The following results will be used to show that TTUMW satisfies the 
descent properties under the Wolfe line search. 
Theorem 2.7  

If supposed algorithm (1.2) holds where 𝛽𝑘  is given as (2.3) and 𝛼𝑘  
is generated by (2.6) and (2.7), then 

𝑔𝑘
𝑇𝑑𝑘 ≤ −(1 − 𝜎)‖𝑔𝑘‖2,            ∀𝑘 ≥ 0.                      (3.5) 

Proof 
The proof of this theorem is induction. Suppose 𝑘 = 0, then 𝑔0

𝑇𝑑0 =
‖𝑔0‖2 . Hence, (3.5) holds. Assume that (3.5) holds true for 𝑘 − 1, 
this implies that 

𝑔𝑘−1
𝑇 𝑑𝑘−1 < 0,                      (3.6) 

which suggests that (1.13) is true. 

Multiplying (1.14) by 𝑔𝑘
𝑇  gives: 

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 + 𝛽𝑘 . 𝑔𝑘

𝑇𝑑𝑘−1 + 𝜃𝑘
(1)

𝑔𝑘
𝑇𝑔𝑘−1. 

Substituting (2.3) and (2.4), we have 

= −‖𝑔𝑘‖2 +
‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 (𝑑𝑘−1 − 𝑚 − 𝑔𝑘)

. 𝑔𝑘
𝑇𝑑𝑘−1

−
𝑔𝑘

𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2
. 𝑔𝑘

𝑇𝑑𝑘−1, 

where 𝑚 =
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘 . 

From Lemma 2.0, it follows that 𝛽𝑘
𝑼𝑀𝑊 =  

‖gk‖2

‖dk−1‖2 when exact line 
search is used. Hence,  

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 +

‖𝑔𝑘‖2

‖dk−1‖2 ∙ 𝑔𝑘
𝑇𝑑𝑘−1 −

𝑔𝑘
𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2 ∙ 𝑔𝑘
𝑇𝑑𝑘−1, 

= −‖𝑔𝑘‖2 + ‖𝑔𝑘‖2 (
𝑔𝑘

𝑇𝑑𝑘−1

‖dk−1‖2) −
𝑔𝑘

𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2 ∙ 𝑔𝑘
𝑇𝑑𝑘−1, 

= −‖𝑔𝑘‖2 + ‖𝑔𝑘‖2 ∙
𝑔𝑘

𝑇𝑑𝑘−1

‖dk−1‖2
−

(𝑔𝑘
𝑇𝑑𝑘−1)

2

‖𝑑𝑘−1‖2
, 

= (1 − 𝜎)‖𝑔𝑘‖2, 

which follows from (3.5), and thus, completes the proof.   

3.2. Global Convergence Property: 
The global convergence analysis of the proposed method will be 
discussed under weak Wolfe conditions.  
Theorem 2.8  
Suppose Assumption 3.1 holds true, then Algorithm 2.1 produces an 
infinite sequence {𝑥𝑘} satisfying  

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0.                                                                                 (3.7) 

Proof  
Assume (3.7) is not true. Then, there exists a constant 𝜗 > 0 such 
that 

‖𝑔𝑘‖ > 𝜗, ∀ 𝑘.                                                                                               (3.8) 

From (2.1) and (2.4), we have: 

‖𝑑𝑘‖ = ‖−𝑔𝑘 + 𝛽𝑘
𝑼𝑀𝑊𝑑𝑘−1 −

𝑔𝑘
𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2   𝑦𝑘−1‖, 

≤ ‖𝑔𝑘‖ + |𝛽𝑘
𝑼𝑀𝑊|‖𝑑𝑘−1‖ + |

𝑔𝑘
𝑇𝑑𝑘−1

‖𝑑𝑘−1‖2| ‖𝑦𝑘−1‖,                      (3.9) 

≤ ‖𝑔𝑘‖ +
‖𝑔𝑘‖2

‖𝑑𝑘−1‖2
‖𝑑𝑘−1‖ +

‖𝑔𝑘‖ ‖𝑑𝑘−1‖

‖𝑑𝑘−1‖
2 ‖𝑦𝑘−1‖,              (3.10) 
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= ‖𝑔𝑘‖ +
‖𝑔𝑘‖2

‖𝑑𝑘−1‖
+

‖𝑔𝑘‖ 

‖𝑑𝑘−1‖
𝐿‖𝑥𝑘 − 𝑥𝑘−1‖,                  (3.11) 

≤ ‖𝑔𝑘‖ +
‖𝑔𝑘‖2

‖𝑔𝑘−1‖
+

‖𝑔𝑘‖ 

‖𝑔𝑘−1‖
𝐿 (‖𝑥𝑘‖ + ‖𝑥𝑘−1‖),                 (3.12) 

≤ 𝜇 +
𝜇2

𝜗
+

𝜇

𝜗
𝐿(2𝜉) ≡ 𝑇, 

where (3.9) comes from the Cauchy–Schwarz inequality; (3.10) from 
Lemma 2.0; (3.11) from part 2 of Assumption 3.1; the fifth inequality 
from relation (2.6) in Liu and Du (2019); and (3.12) from (3.2), (3.8), 
and part 1 of Assumption (3.1). 
Based on the above analysis, we can state that the sequence of 
{‖𝑑𝑘‖} has a common upper bound, that is,  

‖𝑑𝑘‖ ≤ 𝑇, ∀𝑘.                                                                                        (3.9) 

By using (3.8) and (3.9), we have:  

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2 ≥ ∑
𝜗4

𝑇2 = +∞

∞

𝑘=0

∞

𝑘=0

, 

 which contradicts the Zoutendijk condition given in (3.3). Hence, the 
conclusion is that (3.7) is true. This completes the proof.     

4. Results and Discussion 

This section presents the performance results of the proposed 
method. The computational results are compared with that of other 
three-term CG methods from Zhang et al. (2007) to demonstrate the 
efficiency and robustness of our method. All test functions used for 
the experiments (Table 1) are from Andrei (2008). For each test 
function, we chose four initial points under the standard Wolfe 
conditions. All algorithms were coded on the MATLAB 2015a version, 
and the termination condition was set as ‖𝑔𝑘‖ ≤ 10−6. 

Table 1: Unconstrained Optimization Functions 
Functions Dim Initial Points 

Treccani 2 (0.5,0.5), (5,5), (10,10), (15,15) 
Booth  2 (2,2), (9,9), (10,10), (13,13) 

Three Hump Camel  2 (2,2), (9,9), (10,10), (13,13) 
Sphere 2 (5,5), (15,15), (25,25), (50,50) 

Ext DENCHNB 2 (5,5), (15,15), (25,25), (50,50) 
Six Hump 2 (2,2), (10,10), (15,15), (20,20) 

Hager function 2,4 (2,2), (10,10), (15,15), (20,20) 
Quadratic QF2  2,4,10 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 
Power function 2,4,10 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 
Gen Tridiagonal 2,4,10,100 (2,2,…,2), (6,6,…,6), (9,9,…,9), (15,15,…,15) 
Quadratic QF1 2,4,10,100 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 

Matyas function 2,4,10,100 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 
Dixon and price 2,4,10,100 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 

Gen Tridiagonal 2 2,4,10,100 (2,2,…,2), (6,6,…,6), (9,9,…,9), (15,15,…,15) 
Gen Quartic 2,4,10,100,1000 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 
Gen Quartic 2,4,10,100,1000 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 
Sum square  2,4,10,100,1000 (2,2,…,2), (10,10,…,10), (15,15,…,15), (25,25,…,25) 

Treccani 2,4,10,100,1000 (2,2,…,2), (9,9,…,9), (10,10,…,10), (13,13,…,13) 
Ext freudestain andRoth 2,4,10,100,1000,10000 (5,5,…,5), (7,7,…,7), (9,9,…,9), (13,13,…,13) 

Ext Beale  2,4,10,100,1000,10000 (2,2,…,2), (5,5,…,5), (15,15,…,15), (25,25,…,25) 
Fletcher 2,4,10,100,1000,10000 (2,2,…,2), (3,3,…,3), (9,9,…,9), (15,15,…,15) 

 

The performance results presented in Figures 1 and 2 were plotted 
using the performance profile tool introduced by Dolan and Moré 
(2002). This was achieved by recording the number of iterations 
(NOI) and CPU time for all solvers (S) on a set of problems (P). 
Suppose the set of solvers S consist of 𝑛𝑝 problems and 𝑛𝑠 solvers. 
Then, for every solver 𝑠 ∈ 𝑆 and problem 𝑝 ∈ 𝑃, we can define 𝑡𝑝𝑠 
as the number of iterations or CPU time needed by solver 𝑠 ∈ 𝑆 to 
solve problem 𝑝 ∈ 𝑃.   
For every algorithm, the Dolan and Moré tool plots a fraction (P) of 
the benchmark function to obtain a profile curve, as shown in Figures 
1 and 2. The method with the curve lying the highest is regarded as 
the top performer. 

Figure 1: Performance profile based on number of iterations 

 

Figure 2: Performance profile based on CPU time 

 
From Figure 1, it is clear that the convergence of all the methods 
follow a similar pattern. This can be attributed to the structure of the 
algorithms. Despite the close relationship among these algorithms, 
the proposed method demonstrated a better numerical performance 
because it was able to solve the majority of the test problems. In 
addition, based on Figure 2, it is clear that the proposed TTUMW 
method outperformed the three other methods considered for 
comparison. Based on these results, we can conclude that the 
proposed TTUMW method is both superior and promising.   

5. Application of the TTUMW Method for 
Function Estimation in Inverse Heat 
Transfer Problems 

The family of CG methods are known for their low memory 
requirement and global convergence properties when solving 
optimization functions. Most of these problems are traced to specific 
areas of engineering, namely, the sciences, economics, and social 
sciences. Recently, several studies have investigated the performance 
of CG methods on different application problems, such as robotic 
motion control, compressive sensing, fuzzy nonlinear problems, and 
inverse heat transformation problems (see Umar et al., 2020; 
Sulaiman et al., 2022b, 2022c; Razzaq et al., 2020; Omesa et al., 
2023). This section examines the inverse heat transformation 
problem. The problem is transformed into a minimization problem 
and solved using certain stabilization techniques (Colaco and 
Orlande, 1999).  
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Consider the following inverse heat transformation problem:  

min 𝐵𝑖(𝑋, 𝑌, 𝜏)                       (4.0) 
where 𝐵𝑖 is the dimensional heat transfer coefficient, 𝑋 and 𝑌 are the 
dimensional coordinates, and 𝜏  denotes dimensional time. The 
method for solving (4.0) involves the iterative procedure of the CG 
method. Recent studies by Jarny et al. (1991) and Orlande et al. 
(1997) estimated the unknown heat transfer coefficient as follows:  

𝐵𝑖𝑘+1(𝑋, 𝑌, 𝜏) = 𝐵𝑖𝑘(𝑋, 𝑌, 𝜏) − 𝑏𝑘𝑑𝑘(𝑋, 𝑌, 𝜏)                  (4.1) 

where 𝑘  denotes the iteration number. The descent direction is a 
conjugation of the previous direction and gradient computed as:  

𝑑𝑘(𝑋, 𝑌, 𝜏) = 𝑗𝑘
′ (𝑋, 𝑌, 𝑡) + 𝑔𝑘𝑑𝑘−1(𝑋, 𝑌, 𝜏).                   (4.2) 

The conjugation coefficient, 𝛽𝑘 ,  utilized in this study is defined by 
equation (2.1), and the step size 𝛼𝑘  is computed based on (2.6) and 
(2.7).  

To generate the simulated measurement, we needed to rewrite 
𝐵𝑖(𝑋, 𝑌, 𝜏) as follows:  

𝐵𝑖 = 6𝑓𝑡(𝑡)𝑓𝑋(𝑋)𝑓𝑌(𝑌).                                          (4.3) 

Different functional forms were tested for 𝑓𝑡(𝑡), 𝑓𝑋(𝑋), and 𝑓𝑌(𝑌) 
(Lally et al., 1990).  
By generating the following simulated measurements with the 
functional form, this study demonstrates how to estimate the spatial 
changes and temperature shifts of the heat transfer coefficient as 
follows: 

𝐵𝑖(𝑋, 𝑌, 𝜃) = 6𝑒−(0.5𝑋)2
𝑓𝜃(𝜃)                    (4.4) 

where  

𝑓𝜃(𝜃) = 51,338 − 893.278𝜃 + 8566.53𝜃2 − 46,264.9𝜃3 +
154,280𝜃4 − 333,217𝜃5 +  47,539𝜃6 − 445,692𝜃7 +
264,504𝜃8 − 90,201.7𝜃9 + 13,476.3𝜃10        0.103 < 𝜃 < 1 . 
                                                                                                                                (4.5) 

The function given by equation (4.5) comes from the data of Stewart 
et al. (1996), with the initial guess set as 𝐵𝑖0(𝑋, 𝑌, 𝜃) = 1 . By 
considering the final time of 0.125 and applying algorithm 2.1, the 
solution (6.9161, 0.0168) was arrived at after one iteration with a 
CPU time of 0.7155. 

6. Conclusion 

This study investigated the performance of new three-term CG 
algorithms for non-convex optimization functions. The new 
algorithm was extended to solve the problem of heat transfer. An 
interesting feature of the proposed algorithm is that it possesses the 
descent property 𝑔𝑘

𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2,  irrespective of the line search 
condition used. The global convergence analysis of the method was 
discussed under suitable conditions. Numerical computation on a set 
of benchmark problems was presented to determine the performance 
of the method. The experimental results showed that the new 
algorithm outperformed the classical three-term CG in terms of 
number of iterations and CPU time. 
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