Scientific Journal Of King Faisal University: Basic and Applied Sciences
Scientific Journal of King Faisal University: Humanities and Management Sciences
GenAI Agent for Automated Analysis and Personalization of Drug Prevention Campaigns
(Mohammed Aljaafari and Shaymaa E. Sorour)Abstract
This study introduces a generative artificial intelligence (GenAI) agent designed to autonomously evaluate, optimize, and personalize drug prevention campaigns across Facebook, Reddit, Instagram, and Twitter (X) using a 45,000-post multi-platform awareness corpus. Five state-of-the-art large language models, GPT-5-mini, Claude 3.5, Gemini 2.0, Qwen 2.5, and Mixtral, were examined under six structured prompting families, including Original, Role-based, Two-Stage Explicit Sensemaking, and Case-Based Adaptive Reasoning in short and long variants. Model outputs were assessed using a tri-metric framework comprising the Educational Rate (Edu-R), Violation Rate (Vio-R), and Misleading Awareness Score (MAS), supported by classical discrimination and agreement measures, including ROC–AUC and Cohen’s Kappa, as well as influence-spread simulation. Results demonstrate that GPT-5-mini exhibits the strongest overall performance, achieving 95.10% accuracy, 96.22% precision, 94.55% recall, and 95.44% F1 score. Structured prompting substantially improved alignment and safety across all models, increasing GPT-5-mini’s Edu-R from 78.12% under minimal instructions to over 95% under agent-based prompting. The Vio-Rs were reduced to low single-digit values, corresponding to approximately 96%–99% safety-aligned outputs. Influence-spread simulations further showed that cognitively rich prompts significantly enhance message diffusion, particularly in demographic clusters. The proposed GenAI agent establishes a scalable, evidence-driven foundation for real-time evaluation and personalization of drug prevention campaigns.
KEYWORDS
Drug-awareness, educational rate, generative AI, misleading awareness, social media, violation rate
PDF
References
Ahmad, M., Batyrshin, I. and Sidorov, G. (2025). Sentiment analysis using a large language model–based approach to detect opioids mixed with other substances via social media: Method development and validation. JMIR Infodemiology, 5(n/a), e70525. DOI:10.2196/70525
Alamoodi, A.H., Zaidan, B.B., Zaidan, A.A., Zaidan, A.A., Albahri, O.S., Mohammed, K.I., Malik, R.Q., Almahdi, E.M., Chyad, M.A., Tareq, Z.,Albahri, A.S., Hameed, H. and Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167(114155). DOI:10.1016/j.eswa.2020.114155
Albarrak, K.M. and Sorour, S.E. (2024). Boosting institutional identity on X using NLP and sentiment analysis: King Faisal University as a case study. Mathematics, 12(12), 1806. DOI:10.3390/math12121806
Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V.I. and Precise4Q Consortium (2020). Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1), 310. DOI:10.1186/s12911-020-01332-6
Bandeira, A., Gonçalves, L.H., Holl, F., Shaibu, J.U., Gonçalves, M.L., Payinda, R., Paudel, S., Berionni, A., WFPHA, Y., Purnat, T.D. and Mackey, T. (2025). Viewpoint on the intersection among health information, misinformation, and generative AI technologies. JMIR Infodemiology, 5(1), e69474. DOI:10.2196/69474
Brandao, B.M. and Denny, B.T. (2024). What instagram means to me: Links between social anxiety, instagram contingent self-worth, and automated textual analysis of linguistic authenticity. Affective Science, 5(4), 449–57. DOI:10.1007/s42761-024-00267-9
Bharel, M., Auerbach, J., Nguyen, V. and DeSalvo, K.B. (2024). Transforming public health practice with generative artificial intelligence: Article examines how generative artificial intelligence could be used to transform public health practice in the US. Health Affairs, 43(6), 776–82. DOI:10.1377/hlthaff.2024.00050
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. and Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33(n/a), 1877–901.
Cesare, N., Lee, H., McCormick, T., Spiro, E. and Zagheni, E. (2018). Promises and pitfalls of using digital traces for demographic research. Demography, 55(5), 1979–99. DOI:10.1007/s13524-018-0715-2
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. DOI:10.1177/001316446002000104
Deng, T., Urbaczewski, A., Lee, Y.J., Barman-Adhikari, A. and Dewri, R. (2024). Identifying Marijuana Use Behaviors Among Youth Experiencing Homelessness Using a Machine Learning–Based Framework: Development and Evaluation Study. JMIR AI, 3(1), e53488. DOI:10.2196/53488
Eisenstein, J. (2019). Introduction to Natural Language Processing. Cambridge: MIT Press.
Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song, D. and Steinhardt, J. (2020). Aligning AI With Shared Human Values. Available at: https://arxiv.org/abs/2008.02275 (accessed on 10/11/2025).
Khakpaki, A. and Sepehri, H. (2025). AI in addiction: Harnessing technology for diagnosis, prevention, and recovery: A narrative review. Addiction and Substance Abuse, 3(1), 1–7. DOI:10.46439/addiction.3.008
Khosravi, M., Zare, Z., Mojtabaeian, S.M. and Izadi, R. (2024). Artificial intelligence and decision-making in healthcare: A thematic analysis of a systematic review of reviews. Health Services Research and Managerial Epidemiology, 11(n/a), 1–13. DOI:10.1177/23333928241234863
Kojima, T., Gu, S., Reid, M., Matsuo, Y. and Iwasawa, Y. (2022). Large language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35(n/a), 22199–213.
Krippendorff, K. (2018). Content analysis: An Introduction to its Methodology. California: Sage Publications.
Lendvai, G.F. (2025). Reddit in scholarly reception: A bibliometric assessment of the front page of the internet. Quality and Quantity, n/a(n/a), 1–27. DOI:10.1007/s11135-025-02416-z
Li, W., Hua, Y., Zhou, P., Zhou, L., Xu, X. and Yang, J. (2025). Characterizing public sentiments and drug interactions in the COVID-19 pandemic using social media: Natural language processing and network analysis. Journal of Medical Internet Research, 27(n/a), e63755. DOI:10.2196/63755
Maharjan, J., Zhu, J., King, J., Phan, N., Kenne, D. and Jin, R. (2025). Large-scale deep learning–enabled infodemiological analysis of substance use patterns on social media: Insights from the COVID-19 pandemic. JMIR Infodemiology, 5(n/a), e59076.
Manning, C., and Schutze, H. (1999). Foundations of statistical natural language processing. Cambridge: MIT press.
Miao, J., Thongprayoon, C., Suppadungsuk, S., Krisanapan, P., Radhakrishnan, Y. and Cheungpasitporn, W. (2024). Chain of thought utilization in large language models and application in nephrology. Medicina, 60(148), 1–19.
Nasser, B.S.A. and Abu-Naser, S.S. (2024). Artificial intelligence in digital media: Opportunities, challenges, and future directions. International Journal of Academic and Applied Research (IJAAR), 8(6), 1–10.
Nishan, M.N.H. (2025). AI-powered drug discovery for neglected diseases: Accelerating public health solutions in the developing world. Journal of Global Health, 15(n/a), 03002. DOI:10.7189/jogh.15.03002
Nwanakwaugwu, A.C., Andrew-Vitalis, N., Kwakpovwe, P., Emakporuena, D. and Eboesomi, E. (2025). Personalizing medicine for fake drug prevention with Ai-driven digital twins. AI-Powered Digital Twins for Predictive Healthcare: Creating Virtual Replicas of Humans, n/a(n/a), 325–58 DOI:10.4018/979-8-3373-0538-7.ch010
Olawade, D.B., Wada, O.J., David-Olawade, A.C., Kunonga, E., Abaire, O. and Ling, J. (2023). Using artificial intelligence to improve public health: A narrative review. Frontiers in Public Health, 11(n/a), 1-9. DOI:10.3389/fpubh.2023.1196397
Olivares-De la Fuente, P., Jiménez-García, E., Y. and García-López, Ó. (2025). Twitter and YouTube as digital tools in higher education: A systematic review. Frontiers in Education, 10(n/a), 1–9. DOI:10.3389/feduc.2025.1625803
Panteli, D., Adib, K., Buttigieg, S., Goiana-da-Silva, F., Ladewig, K., Azzopardi-Muscat, N., Figueras, J., Novillo-Ortiz, D. and McKee, M. (2025). Artificial intelligence in public health: Promises, challenges, and an agenda for policy makers and public health institutions. The Lancet Public Health, 10(5), e428–32. DOI:10.1016/S2468-2667(25)00036-2
Plackett, R., Steward, J.M., Kassianos, A.P., Duenger, M., Schartau, P., Sheringham, J., Cooper, S., Biddle, L., Kidger, J. and Walters, K.(2025). The effectiveness of social media campaigns in improving knowledge and attitudes toward mental health and help-seeking in high-income countries: Scoping review. Journal of Medical Internet Research, 27(n/a),1–17. DOI:10.2196/68124
Sloan, L., Morgan, J., Burnap, P. and Williams, M. (2015). Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data. PloS one, 10(3), e0115545. DOI:10.1371/journal.pone.0115545
Solaiman, I. and Dennison, C. (2021). Process for adapting language models to society (palms) with values-targeted datasets. Advances in Neural Information Processing Systems, 34(n/a), 5861–73.
Sorour, S.E. and Almusallam, N. (2025). L3D-RAG: Leveraging LLaMA 3.1 and DeepSeek for Reddit analysis. Alexandria Engineering Journal, 131(n/a), 125–52. DOI:10.1016/j.aej.2025.09.070
Uddin, J., Feng, C. and Xu, J. (2025). Health communication on the internet: Promoting public health and exploring disparities in the generative AI era. Journal of Medical Internet Research, 27(n/a), e66032. DOI:10.2196/66032
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30(n/a),1–11.
Villanueva-Miranda, I., Xie, Y. and Xiao, G. (2025). Sentiment analysis in public health: A systematic review of the current state, challenges, and future directions. Frontiers in Public Health, 13 (n/a),1–23. DOI:10.3389/fpubh.2025.1609749
Ye, Y., Pandey, A., Bawden, C., Sumsuzzman, D. M., Rajput, R., Shoukat, A., Singer, B.H., Moghadas, S.M. and Galvani, A.P. (2025). Integrating artificial intelligence with mechanistic epidemiological modeling: A scoping review of opportunities and challenges. Nature Communications, 16(581), 1–18. DOI:10.1038/s41467-024-55461-x
Zhao, Z., Wu, J., Li, T., Sun, C., Yan, R. and Chen, X. (2021). Challenges and opportunities of AI-enabled monitoring, diagnosis and prognosis: A review. Chinese Journal of Mechanical Engineering, 34(56), 1–29. DOI:10.1186/s10033-021-00570-7
Zhu, N., Zhao, F., Wang, L., Ding, R. and Xu, T. (2022). A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows. Expert Systems with Applications, 198(116921),1–18. DOI:10.1016/j.eswa.2022.116921