Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Sciences

Acid Red 73 Removal By Chitosan/Ferrous Oxide Nanocomposite: Adsorption Behavior and Physicochemical Properties

(Khamael M. Abualnaja)

Abstract

This study investigates the efficacy of a chitosan/ferrous oxide nanocomposite (CFON) for the elimination of the dye Acid Red-73 (AR73) from aqueous solutions. Physicochemical characterization via Fourier transform infrared spectroscopy confirmed the presence of critical functional groups (e.g., O-H/N-H stretch at ~3419 cm⁻¹, C-N stretch at ~1399 cm⁻¹, and Fe-O bond at ~642 cm⁻¹) integral to dye binding. Scanning electron microscopy revealed an uneven, irregular surface morphology with constituent nanoparticles in the 16–19.8 nm range, providing a substantial surface area for adsorption, while energy dispersive X-ray spectroscopy validated the elemental composition, notably carbon (39.76%), oxygen (38.13%), nitrogen (2.87%), and iron (0.54%). Batch adsorption experiments demonstrated exceptional CFON performance, achieving over 99% AR73 removal under optimized conditions (pH, adsorbent dose [0.02–0.04 g], contact time [120–240 min], and initial dye concentration [20–60 mg/L]). The adsorption equilibrium data were best described by the Freundlich isotherm model (R² = 0.958; KF = 1.048; 1/n = 6.234), indicating favorable multilayer adsorption onto a heterogeneous surface. Response surface methodology (RSM) with a central composite design identified the quadratic effect of contact time and the interaction between contact time and solution pH as the most statistically significant factors (p < 0.05 based on Pareto chart analysis).
KEYWORDS
Industrial pigments, multilayer adsorption, nanocomposite, removal efficiency, surface methodology, water pollution

PDF

References

Abdallah, M.A.M. and Alprol, A.E. (2024). Utilization of aquatic biomass as biosorbent for sustainable production of high surface area, nano-microporous, for removing two dyes from wastewater. Scientific Reports, 14(1), 4471. DOI: 10.1038/s41598-024-54539-2.
Abualnaja, K.M., Alprol, A.E., Ashour, M. and Mansour, A.T. (2021).  Influencing multi-walled carbon nanotubes for the removal of ismate violet 2R dye from wastewater: isotherm, kinetics, and thermodynamic studies. Applied Sciences, 11(11), 4786. DOI: 10.3390/app11114786.
Akhtar, K., Khan, S.A., Khan, S.B. and Asiri, A.M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. DOI: 10.1007/978-3-319-92955-2_4.
Alprol, A. (2019). Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian J. Fish. Aquat. Res, 3(2), 1–18. DOI: 10.9734/ajfar/2019/v3i230032.
Alprol, A.E., Mansour, A.T., Abdelwahab, A.M. and Ashour, M. (2023). Advances in green synthesis of metal oxide nanoparticles by marine algae for wastewater treatment by adsorption and photocatalysis techniques. Catalysts, 13(5), 888. DOI: 10.3390/catal13050888.
Alprol, A.E., Mansour, A.T., Ibrahim, M.E.E.D. and Ashour, M. (2024). Artificial intelligence technologies revolutionizing wastewater treatment: Current trends and future prospective. Water, 16(2), 314. DOI: 10.3390/w16020314.
Ashour, M., Alprol, A.E., Khedawy, M., Abualnaja, K.M. and Mansour, A.T. (2022). Equilibrium and kinetic modeling of crystal violet dye adsorption by a marine diatom, skeletonema costatum. Materials, 15(18), 6375. DOI: 10.3390/ma15186375.
Ashour, M., Mansour, A.T., Abdelwahab, A.M. and Alprol, A.E. (2023). Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto-and bioremediation and photocatalytic degradation of organic pollutants. Processes, 11(12), 3356. DOI: DOI: 10.3390/pr11123356.
Banerjee, S., Mukherjee, S., LaminKa-Ot, A., Joshi, S., Mandal, T. and Halder, G. (2016). Biosorptive uptake of fe2+, cu2+ and as5+ by activated biochar derived from colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation. Journal of Advanced Research, 7(5), 597–610. DOI: 10.1016/j.jare.2016.06.002.
Chaleshtori, A.N., Meghadddam, F.M., Sadeghi, M., Rahimi, R., Hemati, S. and Ahmadi, A. (2017). Removal of acid red 18 (azo-dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. Journal of Environmental Science and Management, 20(2), 9–16. DOI: 10.47125/jesam/2017_2/02.
Chueachot, R., Wongkhueng, S., Khankam, K., Lakrathok, A., Kaewnon, T., Naowanon, W., Amnuaypanich, S. and Nakhowong, R. (2018). Adsorption efficiency of methylene blue from aqueous solution with amine-functionalized mesoporous silica nanospheres by co-condensation biphasic synthesis: Adsorption condition and equilibrium studies. Materials Today: Proceedings, 5(6), 14079–85. DOI: 10.1016/j.matpr.2018.02.066.
Fan, J., Guo, Y., Wang, J. and Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166(2-3), 904–10. DOI: 10.1016/j.jhazmat.2008.11.091.
Freundlich, H.M.F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57(385471), 1100–7. 
Ghoneim, M.M., El-Desoky, H.S., El-Moselhy, K.M., Amer, A., Abou El-Naga, E.H., Mohamedein, L.I. and Al-Prol, A.E. (2014). Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. The Egyptian Journal of Aquatic Research, 40(3), 35–242. DOI: 10.1016/j.ejar.2014.08.005.
Harkins, W.D. and Jura, G. (1943). An adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. The Journal of Chemical Physics, 11(9), 431–2. DOI: 10.1063/1.1723871. 
Kareem, F.F., M.F.H. Al-Kadhemy, and A.A. Saeed. (2021). Impact of solvents, magnesium oxide and aluminium oxide nanoparticles on the photophysical properties of acridine orange dye. Scientific Journal of King Faisal University: Basic and Applied Sciences, 22(2), 113–9. DOI: 10.37575/b/sci/210047.
Karimifard, S. and Moghaddam, M.R.A. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 640(n/a), 772–97. DOI: 10.1016/j.scitotenv.2018.05.355.
Karri, R.R. and Sahu, J. (2018). Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (ii) by palm kernel shell based activated carbon from aqueous environment. Journal of Environmental Management, 206(n/a), 178–91. DOI: 10.1016/j.jenvman.2017.10.026.
Kasraee, M., Dehghani, M.H., Hamidi, F., Mubarak, N.M., Karri, R.R., Rajamohan, N. and Solangi, N.H. (2023). Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Scientific Reports, 13(1), 13833. DOI: 10.1038/s41598-023-41100-w.
Krishnan, K.A. and Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–35. DOI: 10.1016/j.jhazmat.2007.07.015.
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part i. Solids. Journal of the American Chemical Society, 38(11), 2221–95. DOI: 10.1021/ja02268a002.
Mansour, A.T., Alprol, A.E., Abualnaja, K.M., El-Beltagi, H.S., Ramadan, K.M.A. and Ashour, M. (2022a). The using of nanoparticles of microalgae in remediation of toxic dye from industrial wastewater: Kinetic and isotherm studies. Materials (Basel), 15(11), 3922. DOI: DOI: 10.3390/ma15113922. 
Mansour, A.T., Alprol, A.E., Ashour, M., Ramadan, K.M.A., Alhajji, A.H.M. and Abualnaja, K.M. (2022b). Do red seaweed nanoparticles enhance bioremediation capacity of toxic dyes from aqueous solution? Gels, 8(5), 310. DOI: 10.3390/gels8050310. 
Mukherjee, D., Ghosh, S., Majumdar, S. and Annapurna, K. (2016). Green synthesis of α-fe2o3 nanoparticles for arsenic (v) remediation with a novel aspect for sludge management. Journal of Environmental Chemical Engineering, 4(1), 639–50. DOI: 10.1016/j.jece.2015.12.010.
Preethi, S., Abarna, K., Nithyasri, M., Kishore, P., Deepika, K., Ranjithkumar, R., Bhuvaneshwari, V. and Bharathi, D. (2020). Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. International Journal of Biological Macromolecules, 164(n/a), 2779–87. DOI: 10.1016/j.ijbiomac.2020.08.047.
Putra, W.P., Kamari, A., Yusoff, S.N.M., Ishak, C.F., Mohamed, A., Hashim, N. and Isa, I.M. (2014). Biosorption of cu (ii), pb (ii) and zn (ii) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4(1), 25–35. DOI: 10.4236/jeas.2014.41004. 
Raval, N.P., Shah, P.U. and Shah, N.K. (2017). Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Applied Water Science, 7(n/a), 3407–45.  DOI: 10.1007/s13201-016-0512-2.
Ravulapalli, S. and Kunta, R. (2019). Effective removal of methylene blue, a hazardous dye from industrial effluents using active carbon of F. infectoria plant. International Journal of Environmental Science and Technology, 16(12), 7837–48. DOI: 10.1007/s13762-018-2147-3.
Salazar-Rabago, J.J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R. and Cerino-Cordova, F.J. (2017). Biosorption mechanism of methylene blue from aqueous solution onto white pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research, 27(1), 32–40. DOI: 10.1016/j.serj.2016.11.009.
Yan, H., Yang, H., Li, A. and Cheng, R. (2016). PH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chemical Engineering Journal, 284(n/a), 1397–405. DOI: 10.1016/j.cej.2015.06.030.