
Scientific Journal Of King Faisal University: Basic and Applied Sciences
Scientific Journal of King Faisal University: Basic and Applied Sciences
Anabaena variabilis as a Promising Biofertiliser and Biochemical Enhancer of Two Local Bread Wheat Cultivars
(Rana Nassour and Seraoos Mohamad)Abstract
The potential of Anabaena variabilis as a biofertiliser for two Triticum aestivum L. cultivars –Doma 6 (D6) and Bohoth 8 (B8) was tested. Three treatments were used: T1 (control, irrigated with BG11), T2 (control – N, irrigated with BG11 without NaNO3), and T3 (inoculated with A. variabilis and irrigated with BG11 without NaNO3) to evaluate their impact on pigment, carbohydrate and protein contents. Measurements were taken at 14, 21, 28 and 35 days of seedling growth (three replicates each). The results indicated that nitrogen deficiency (T2) led to a general decrease in all the studied parameters. In contrast, the presence of A. variabilis (T3) enhanced chlorophyll a, chlorophyll b, carotenoid, carbohydrate and protein contents in both studied cultivars, with significantly greater effects observed in the D6 cultivar.
KEYWORDS
Carbohydrate, carotenoids, chlorophyll, cyanobacteria, protein, Triticum aestivum
PDF
References
Abo‑Shady, A.M., Osman, M.E.H., Gaafar, R.M., Ismail, G.A. and El‑Nagar, M.M.F. (2023). Cyanobacteria as a valuable natural resource for improved agriculture, environment, and plant protection. Water, Air and Soil Pollution, 234(5), 313. DOI: 10.1007/s11270-023-06331-7.
Allaf, M.M. and Peerhossaini, H. (2022) Cyanobacteria: Model microorganisms and beyond. Microorganisms, 10(4), 696. DOI: 10.3390/microorganisms10040696.
Alvarez, A.L., Weyers, S., Johnson, J.M.F. and Gardner, R.D. (2021). Soil inoculations with Anabaena cylindrica improve aggregate stability and nutrient dynamics in an arable soil and exhibit potential for erosion control. Journal of Applied Phycology, 33(n/a), 3041–57. DOI: 10.1007/s10811-021-02526-9.
Årstøl, E. and Hohmann-Marriott, M.F. (2019). Cyanobacterial siderophores-physiology, structure, biosynthesis, and applications. Marine Drugs, 17(5), 281. DOI: 10.3390/md17050281.
Buthelezi, K. and Buthelezi-Dube, N. (2022). Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil. Heliyon, 8(1), e08690. DOI: 10.1016/j.heliyon.2021.e08690.
Chamizo, S., Mugnai, G., Rossi, F., Certini, G. and De Philippis, R. (2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6(n/a), 49. DOI: 10.3389/fenvs.2018.00049.
Chittora, D., Meena, M., Barupal, T. and Swapnil, P. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22(n/a), 100737. DOI: 10.1016/j.bbrep.2020.100737.
Chua, M., Erickson, T.E., Merritt, D.J., Chilton, A.M., Ooi, M.J.K. and Muñoz-Rojas, M. (2019). Bio-priming seeds with cyanobacteria: Effects on native plant growth and soil properties. Restoration Ecology, 28(52), S168–S176. DOI: 10.1111/rec.13040.
Elagamey, E., Abdellatef, M.A.E. and Flefel, H.E. (2023). Cyanobacteria – A futuristic effective tool in sustainable agriculture. In: Tiwari A (Ed.). Cyanobacteria - Recent Advances and New Perspectives. DOI: 10.5772/intechopen.109829.
Food and Agriculture Organization of the United Nations (2024): FAOSTAT: Fertilizers by Nutrient. Available at: https://www.fao.org/faostat/en/#data/RFN (accessed on 24/5/2024).
Food and Agriculture Organization of the United Nations. (2025). FAOSTAT: Crops And Livestock Products. Available at: https://www.fao.org/faostat/en/#data/QCL (accessed on 24/5/2025).
Gavilanes, F.Z., Andrade, D.S., Zucareli, C., Horácio, E.H., Yunes, S., Barbosa, A.P., Alves, L.A.R., Cruzatti, G.L., Maddela, N.R. and Guimarães, M.F. (2020). Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases maize grain yield. Rhizosphere, 15(4), 100224. DOI: 10.1016/j.rhisph.2020.100224.
Ghazal, F.M., Mahdy, E.M., Abd EL- Fattah, M.S., EL-Sadany, A.E.Y. and Doha, N.M.E. (2018). The use of cyanobacteria as biofertilizer in wheat cultivation under different nitrogen rates. Nature and Science, 16(4), 30–5. DOI: 10.7537/marsnsj160418.06.
Gheda, S.F. and Ahmed, D.A. (2014). Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrical. Rendiconti Lincei. Scienze Fisiche e Naturali, 26(n/a), 121–31. DOI 10.1007/s12210-014-0351-8.
Gonçalves, A.L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating, and biopesticide roles. Applied Sciences, 11(2), 1–21. DOI: 10.3390/ app11 020871.
Hakkoum, Z., Minaoui, F., Chabili, A., Douma, M., Mouhri, K. and Loudiki, M. (2025). Biofertilizing effect of soil cyanobacterium Anabaena cylindrica–based formulations on wheat growth, physiology, and soil fertility. Agriculture, 15(2), 189. DOI: 10.3390/agriculture15020189.
Hui, K., Xi, B., Tan, W. and Song, Q. (2022). Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environmental Research, 215 (Pt 2), 114267. DOI: 10.1016/j.envres.2022.114267.
Ismail, G.A. and Abo-Hamad, S.A. (2017). Effect of different Anabaena variabilis (Kütz) treatments on some growth parameters and physiological aspects of Hordeum vulgare L. and Trigonella foenum-graecum L. Egyptian Journal of Botany, 57(3), 507–16. DOI: 10.21608/ejbo.2017.774.1046.
Kaplan, A. (1995). Clinical Chemistry: Interpretation and Techniques. Lippincott Williams and Wilkins.
Kholssi, R., Marks, E.A.N., Miñón, J., Montero, O., Lorentz, J.F., Debdoubi, A. and Rad, C. (2022). Biofertilizing effects of Anabaena cylindrica biomass on the growth and nitrogen uptake of wheat. Communications in Soil Science and Plant Analysis, 53(10), n/a. DOI: 10.1080/00103624.2022.2043350.
Kollmen, J. and Strieth, D. (2022). The beneficial effects of cyanobacterial co-culture on plant growth. Life, 12(2), 223. DOI: 10.3390/life12020223.
Langridge, P., Alaux, M., Almeida, N. F., Ammar, K., Baum, M., Bekkaoui, F., Bentley, A. R., Beres, B. L., Berger, B., Braun, H.-J., Brown-Guedira, G., Burt, C. J., Caccamo, M. J., Cattivelli, L., Charmet, G., Civáň, P., Cloutier, S., Cohan, J.-P., Devaux, P. J., ... Zhang, X. (2022). Meeting the challenges facing wheat production: The strategic research agenda of the global wheat initiative. Agronomy, 12(11), 2767. DOI: 10.3390/agronomy12112767.
Lichtenthaler, H.K. and Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–2.
Lo, S.N. and Garceau, J.J. (1975). A Spectrophotometric Method for Quantitative Analysis of Sugar Mixtures Containing Known Sugars. The Canadian journal of Chemical Engineering, 53(n/a), 582-587.
Matsuo, O., Zucareli, C., Horácio, E.H., Alves, L.A.R. and Saab, O.J.G.A. (2022). Co-inoculation of Anabaena cylindrica and Azospirillum brasilense during initial growth and chloroplast pigments of corn. Brazilian Journal of Agricultural and Environmental Engineering, 26(2), 97–102. DOI: 10.1590/1807-1929/agriambi.v26n2p97-102.
Mohan, A., Kumar, M. and Kumar, B. (2020). Siderophore production by some soil Cyanobacteria. Journal of Pharmacy and Biological Sciences, 15(5), 34–44. DOI: 10.9790/3008-1505033444.
Nawaz, T., Saud, S., Gu, L., Khan, I., Fahad, S. and Zhou, R. (2024). Cyanobacteria: Harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress, 11(n/a), 100399. DOI: 10.1016/j.stress.2024.100399.
Nur, M.M.A., Mahreni, Murni, A.W., Setyoningrum, T.M., Hadi, F., Widayati, T.W., Jaya, D., Sulistyawati, R.R.E., Puspitaningrum, D.A., Dewi, R.N., Hadiyanto and Hasanuzzaman, M. (2025). Innovative strategies for utilizing microalgae as dual-purpose biofertilizers and phycoremediators in agroecosystems. Biotechnology Reports, 45(n/a), e00870. DOI: 10.1016/j.btre.2024.e00870.
Pathak, J., Jaiswal, J., Shukla, R.K., Singh, D.K. and Sinha, R.P. (2024). Cyanobacterial/algal biofertilizers as plant growth stimulants for green sustainable agriculture. Journal of Materials and Physical Sciences, 12(1), 25–37, DOI: 10.22271/plants.2024.v12.i1a.1622.
Rippka, R. and Herdman, H. (1992). Pasteur Culture Collection of Cyanobacterial Strains in Axenic Culture. Catalogue and Taxonomic Handbook. Vol. 1. Catalogue of Strains. 103 p., Institute Pasteur, Paris, France.
Saadatnia, H. and Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant, Soil and Environment, 55(5), 207–12. DOI: 10.17221/384-PSE.
Saraf, A., Dawda, H.G. and Singh, P. (2022). Polyphasic approach and cyanobacterial taxonomy: Some perspectives and case studies. In Ecophysiology and biochemistry of cyanobacteria. Singapore: Springer Nature Singapore.
Sharma, I., Tyagi, B.S., Singh, G., Venkatesh, K. and Gupta O.P. (2015). Enhancing wheat production- A global perspective. Indian Journal of Agricultural Sciences, 85(1), 3–13. DOI: 10.56093/ijas.v85i1.45935.
Trivedi, P.C., Pandey, S, and Bhadauria, S. (2010). Text Book of Microbiology. India: Aavishkar Publishers
United Nations (2022). Demographic Yearbook 2022. Available at: https://desapublications.un.org/publications/demographic-yearbook-2022 (accessed on 20/7/2024).
United Nations. (2024). Our Growing Population. Available at: https://www.un.org/en/global-issues/population (accessed on 22/9/2024).
Zahra, Z., Choo, D.H., Lee, H. and Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(2), 13; DOI: 10.3390/environments7020013.
Zeng, X. and Zhang, C.C. (2022). The making of a heterocyst in cyanobacteria. Annual review of microbiology, 76(n/a), 597–618. DOI: 10.1146/annurev-micro-041320-093442.