Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Sciences

Magneto-Exciton Energy in Cylindrical Indium Arsenide Quantum Dots Affected by External Parameters

(Marwan Zuhair Elias)

Abstract

The effects of temperature, pressure, and an applied magnetic field on the energies of a cylindrical layer of indium arsenide (InAs) quantum dots, with and without Coulomb interaction, are investigated. Exciton energy depends significantly on these parameters. The results show that the ground-state and excited-state energies increase with rising temperature and applied magnetic field (blue shift), but that both energy states decrease with increasing pressure (red shift). As the temperature increases for higher states, the sensitivity of magneto-exciton energy also increases. The outcomes obtained for layered and ring-shaped systems exhibit a universal quality, making them particularly interesting.
KEYWORDS
Exciton, magnetic field, nanostructures, potential, pressure, temperature

PDF

References

Barseghyan, M.G., Hakimyfard, A., Zuhair, M., Duque, C.A. and Kirakosyan, A.A. (2011). Binding energy of hydrogen-like donor impurity and photoionization cross-section in InAs Pöschl–Teller quantum ring under applied magnetic field. Physica E: Low-dimensional Systems and Nanostructures, 44(2), 419–24. DOI: 10.1016/j.physe.2011.09.013
Bhat, B.M.U.D. and Shah, K.A. (2018). Effect of dot size on exciton energy states confined in a spherical gallium arsenide quantum dot. Nanosystem, Nanomaterial, Nanotechnology, 16(1), 175–9. DOI: 10.15407/nnn.16.01.175
Chafai, A., Essaoudi, I., Ainane, A., Dujardin, F. and Ahuja, R. (2019). Binding energy of an exciton in a GaN/AlN nanodot: Role of size and external electric field. Physica B: Condensed Matter, 559(n/a), 23–8. DOI: 10.1016/j.physb.2019.01.047
Duque, C.A., Porras-Montenegro, N., Barticevic, Z., Pacheco, M. and Oliveira, L.E. (2006). Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. Journal of Physics: Condensed Matter, 18(6), 1877. DOI: 10.1088/0953-8984/18/6/005
Elias, M.Z. (2019). Scattering by interface roughness of InAs/GaAs quantum well under some external influences. Physica E: Low-dimensional Systems and Nanostructures, 108(n/a), 96–9. DOI: 10.1016/j.physe.2018.12.011
Fratelli, A., Zaffalon, M.L., Mazzola, E., Dirin, D.N., Cherniukh, I., Otero‐Martínez, C. and Brovelli, S. (2025). Size‐Dependent multiexciton dynamics governs scintillation from perovskite quantum dots. Advanced Materials, 37(5), 2413182. DOI: 10.1002/adma.202413182
Ghosh, O.S.N., Gayathri, S., Allam, S.R., Sharan, A., Lal, S.S., Reddy, M.J.K. and Viswanath, A.K. (2024). Bound exciton engineering approach for tuning the thermal lensing phenomenon in anatase TiO2: Gd nanosystems. Chemical Physics Impact, 9(n/a), 100679. DOI: 10.1016/j.chphi.2024.100679
Hsiao, T.K., Cova Fariña, P., Oosterhout, S.D., Jirovec, D., Zhang, X., van Diepen, C.J. and Vandersypen, L.M.K. (2024). Exciton transport in a germanium quantum dot ladder. Physical Review X, 14(1), 011048. DOI: 10.1103/PhysRevX.14.011048
Janssens, K.L., Partoens, B. and Peeters, F.M. (2001a). Magnetoexcitons in planar type-II quantum dots in a perpendicular magnetic field. Physical Review B, 64(15), 155324. DOI: 10.1103/PhysRevB.64.155324
Janssens, K.L., Partoens, B. and Peeters, F.M. (2002). Magneto‐exciton in single and coupled type ii quantum dots. Physica Status Solidi (A), 190(2), 571–6.  DOI: 10.1002/1521-396X(200204)190:2<571::AID-PSSA571>3.0.CO;2-K
Janssens, K.L., Partoens, B. and Peeters, F.M. (2004). Magnetoexciton in vertically coupled InP∕ GaInP quantum disks: Effect of strain on the exciton ground state. Physical Review B—Condensed Matter and Materials Physics, 69(23), 235320. DOI: 10.1103/PhysRevB.69.235320
Janssens, K.L., Peeters, F.M. and Schweigert, V.A. (2001b). Magnetic-field dependence of the exciton energy in a quantum disk. Physical Review B, 63(20), 205311. DOI: 10.1103/PhysRevB.63.205311
Kita, T., Harada, Y. and Asahi, S. (2019). Fundamentals of semiconductors. In: Energy Conversion Efficiency of Solar Cells. Green Energy and Technology. Springer, Singapore. DOI: 10.1007/978-981-13-9089-0_8
Kramar, V.M. (2009). Temperature dependence of the excitonic transition energy in flat semiconductor nanofilms. Ukr. J. Phys., 54(12), 1225–33.
Niehues, I., Blob, A., Stiehm, T., de Vasconcellos, S.M. and Bratschitsch, R. (2019). Interlayer excitons in bilayer MoS 2 under uniaxial tensile strain. Nanoscale, 11(27), 12788–92. DOI: 10.1039/C9NR03332G
Niehues, I., Marauhn, P., Deilmann, T., Wigger, D., Schmidt, R., Arora, A. and Bratschitsch, R. (2020). Strain tuning of the Stokes shift in atomically thin semiconductors. Nanoscale, 12(40), 20786–96. DOI: 10.1039/D0NR04557H
Pokutnyi, S.I. (2013). Binding energy of the exciton of a spatially separated electron and hole in quasi-zero-dimensional semiconductor nanosystems. Technical Physics Letters, 39(n/a), 233–5. DOI: 10.1134/S1063785013030139
Pokytnyi, S.I., Gayvoronsky, V.Y. and Poroshin, V.N. (2023). Spatially indirect excitons and exciton quasimolecules in nanosystems with double quantum dots. Molecular Crystals and Liquid Crystals, 752(1), 103–11. DOI: 10.1016/j.rinp.2025.108191
Wang, X., Gao, Y., Liu, X., Xu, H., Liu, R., Song, J. and Fan, F. (2024). Strong high-energy exciton electroluminescence from the light holes of polytypic quantum dots. Nature Communications, 15(1), 6334. DOI: 10.1038/s41467-024-50432-8
Zieliński, M., Gołasa, K., Molas, M.R., Goryca, M., Kazimierczuk, T., Smoleński, T. and Babiński, A. (2015). Excitonic complexes in natural InAs/GaAs quantum dots. Physical Review B, 91(8), 085303. DOI: 10.1103/PhysRevB.91.085303
Zuhair, M. (2012). Hydrostatic pressure and electric-field effects on the electronic and optical properties of InAs spherical layer quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 46(n/a), 232–5. DOI: 10.1016/j.physe.2012.09.017
Zuhair, M., Manaselyan, A. and Sarkisyan, H. (2009). Magneto-and electroabsorption in narrow-gap InSb cylindrical layer quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 41(8), 1583–90. DOI: 10.1016/j.physe.2009.05.002.