Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Sciences

Modified Efficient Net of Chest X-Ray Images for Lung Disease Classification Using Transfer Learning Approach

(Sonia Verma, Ganesh Gopal Devarajan and Pankaj Kumar Sharma)

Abstract

Chest X-ray (CXR) studies can be automatically detected, and their locations can be identified using artificial intelligence in healthcare. The World Health Organization reports that lung diseases such as COVID-19, pneumonia, tuberculosis, and lung opacity contribute significantly to global mortality. The overlapping symptoms of these diseases make accurate identification difficult. To accelerate the process and enable early detection, machine learning (ML) and traditional approaches are combined to improve disease detection. CXR images are used in this study to classify lung disease using ML and transfer learning (TL). The study primarily consists of three parts: firstly, the data augmentation technique addresses class imbalance; secondly, the image enhancement and pre-processing technique improves image quality; and finally, the TL approach EfficientNetB1 extracts features and uses weighted binary cross-entropy loss to handle a large number of false positive cases. Fine-tuning hyperparameters significantly enhance performance. AUC-PR, ROC-AUC, F1-score, and precision are among the metrics that demonstrate the proposed method to be more accurate and effective than other TL models.
KEYWORDS
Computer vision, COVID-19, deep learning, efficientNetB1, pneumonia, transfer learning
PDF

References

Al-Ahmadi, S. and Mohammad, F. (2023). Pattern recognition of omicron variants from amalgamated multi-focus EEG signals and X-ray images using deep transfer learning. Egyptian Informatics Journal, 24(1), 129–38. DOI: 10.1016/j.eij.2023.01.001
Arias-Londono, J.D., Gomez-Garcia, J.A., Moro-Velazquez, L. and Godino-Llorente, J.I. (2020). Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach. Ieee Access, 8(n/a), 226811–27. DOI: 10.1109/ACCESS.2020.3044858
Bharati, S., Podder, P. and Mondal, M.R.H. (2020). Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, 20(n/a), 100391. DOI: 10.1016/j.imu.2020.100391
Chakraborty, S., Paul, S. and Hasan, K.A. (2022). A transfer learning-based approach with deep cnn for covid-19-and pneumonia-affected chest x-ray image classification. SN Computer Science, 3(n/a), 1–10. DOI: 10.1007/s42979-021-00881-5
Cheng, J., Zhao, W., Liu, J., Xie, X., Wu, S., Liu, L. and Liu, J. (2021). Automated diagnosis of COVID-19 using deep supervised autoencoder with multi-view features from CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 2723–36. DOI: 10.1109/TCBB.2021.3102584
Chowdhury, M.E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B. and Islam, M.T. (2020). Can AI help in screening viral and COVID-19 pneumonia?. Ieee Access, 8(n/a), 132665–76. DOI: 10.1109/ACCESS.2020.3010287
De Moura, J., García, L.R., Vidal, P.F.L., Cruz, M., López, L.A., Lopez, E.C. and Ortega, M. (2020). Deep convolutional approaches for the analysis of covid-19 using chest x-ray images from portable devices. Ieee Access, 8(n/a), 195594–1607. DOI: 10.1109/ACCESS.2020.3033762
Dzierżak, R. (2019). Comparison of the influence of standardization and normalization of data on the effectiveness of spongy tissue texture classification. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(3), 66–9. DOI: 10.35784/iapgos.62
Fernando, C., Kolonne, S., Kumarasinghe, H. and Meedeniya, D. (2022). Chest radiographs classification using multi-model deep learning: A comparative study. In: 2nd International Conference on Advanced Research in Computing (ICARC). Belihuloya, Sri Lanka, 23-24 /02/2022. DOI: 10.1109/ICARC54489.2022.9753811
Geddes, D. (2020). The history of respiratory disease management. Medicine, 48(4), 239–43. DOI: 10.1016/j.mpmed.2020.01.007
Hassan, M., Shaikh, M.S. and Jatoi, M.A. (2022). Image quality measurement-based comparative analysis of illumination compensation methods for face image normalization. Multimedia Systems, 28(2), 511–20. DOI: 10.1007/s00530-021-00853-y
Hemdan, E.E.D., Shouman, M.A. and Karar, M.E. (2020). Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055, n/a(n/a), n/a. DOI: 10.48550/arXiv.2003.11055
Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T. and Parvez, M.Z. (2021). CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons and Fractals, 142(n/a), 110495. DOI: 10.1016/j.chaos.2020.110495
Indumathi, V. and Siva, R. (2023). An efficient lung disease classification from X-ray images using hybrid Mask-RCNN and BiDLSTM. Biomedical Signal Processing and Control, 81(n/a), 104340. DOI:10.1016/j.bspc.2022.104340
Ismael, A.M. and Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164(n/a), 114054. DOI: 10.1016/j.eswa.2020.114054
Karthik, R., Menaka, R. and Hariharan, M.J.A.S.C. (2021). Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN. Applied Soft Computing, 99(n/a), 106744. DOI: 10.1016/j.asoc.2020.106744
Kasinathan, G. and Jayakumar, S. (2022). Cloud‐Based Lung Tumor Detection and Stage Classification Using Deep Learning Techniques. Biomed research international, 2022(1), 4185835.  DOI: 10.1155/2022/4185835
Kaur, S. and Kulkarni, N. (2024). FERFM: An enhanced facial emotion recognition system using fine-tuned mobilenetv2 architecture. IETE journal of research, 70(4), 3723–37. DOI:10.1080/03772063.2023.2202158
Kumar, D. (2020). Feature extraction and selection of kidney ultrasound images using GLCM and PCA. Procedia Computer Science, 167(n/a), 1722–31. DOI: 10.1016/j.procs.2020.03.382
Li, D., Liu, Z., Luo, L., Tian, S. and Zhao, J. (2022). Prediction of Pulmonary Fibrosis Based on X‐Rays by Deep Neural Network. Journal of Healthcare Engineering, 2022(1), 3845008. DOI: 10.1155/2022/3845008
Mathieu, E., Ritchie, H., Rodés-Guirao, L., Appel, C., Gavrilov, D., Giattino, C. and Roser, M. (2020). Coronavirus (COVID-19) Cases. Available at: https://ourworldindata.org/covid-cases (acssesd on 13/02/2025)
Muljo, H.H., Pardamean, B., Elwirehardja, G.N., Hidayat, A.A., Sudigyo, D., Rahutomo, R. and Cenggoro, T.W. (2023). Handling severe data imbalance in chest X-Ray image classification with transfer learning using SwAV self-supervised pre-training. Commun. Math. Biol. Neurosci., 2023(n/a), n/a. DOI: 1028919/cmbn/7526
Nguyen, H., Pham, H.H., Nguyen, N.T., Nguyen, D.B., Dao, M., Vu, V. and Le, L.T. (2020). Vinbigdata Chest X-Ray Abnormalities Detection. Available at: https://www. kaggle. com/c/vinbi gdatachest-xray-abnor malit ies-detec tion (acssesd on 13/02/2025)
Panwar, H., Gupta, P.K., Siddiqui, M.K., Morales-Menendez, R., Bhardwaj, P. and Singh, V. (2020). A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos, Solitons and Fractals, 140(n/a), 110190. DOI: 10.1016/j.chaos.2020.110190
Rajaraman, S., Siegelman, J., Alderson, P.O., Folio, L.S., Folio, L.R. and Antani, S.K. (2020). Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays. Ieee Access, 8(n/a), 115041–115050. DOI: 10.1109/access.2020.3003810
Ravi, V., Acharya, V. and Alazab, M. (2023). A multichannel EfficientNet deep learning-based stacking ensemble approach for lung disease detection using chest X-ray images. Cluster Computing, 26(2), 1181–1203. DOI: 10.1007/s10586-022-03664-6
Raza, R., Zulfiqar, F., Khan, M.O., Arif, M., Alvi, A., Iftikhar, M.A. and Alam, T. (2023). Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Engineering Applications of Artificial Intelligence, 126(n/a), 106902. DOI:10.1016/j.engappai.2023.106902
Showkat, S. and Qureshi, S. (2022). Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia. Chemometrics and Intelligent Laboratory Systems, 224(n/a),104534. DOI: 10.1016/j.chemolab.2022.104534
Singh, R.K., Pandey, R. and Babu, R.N. (2021). COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. Neural Computing and Applications, 33(n/a), 8871–92. DOI: 10.1007/s00521-020-05636-6 
Souid, A., Sakli, N. and Sakli, H. (2021). Classification and predictions of lung diseases from chest x-rays using mobilenet v2. Applied Sciences, 11(6), 2751. DOI: 10.3390/app11062751 
Syed, A.H., Khan, T. and Khan, S.A. (2023). Deep transfer learning techniques-based automated classification and detection of pulmonary fibrosis from chest CT images. Processes, 11(2), 443. DOI: 10.3390/pr11020443 
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In: The 36th  International conference on machine learning. PMLR. Long Beach, CA, USA, 10-15/06/2019.
Tan, T., Li, Z., Liu, H., Zanjani, F.G., Ouyang, Q., Tang, Y. and Li, Q. (2018). Optimize transfer learning for lung diseases in bronchoscopy using a new concept: sequential fine-tuning. IEEE Journal of Translational Engineering in Health and Medicine, 6(n/a), 1–8. DOI: 10.1109/JTEHM.2018.2865787 
Wang, C., Chen, D., Hao, L., Liu, X., Zeng, Y., Chen, J. and Zhang, G. (2019). Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access, 7(n/a), 146533–141. DOI: 10.1109/ACCESS.2019.2946000 
Yaseliani, M., Hamadani, A.Z., Maghsoodi, A.I. and Mosavi, A. (2022). Pneumonia detection proposing a hybrid deep convolutional neural network based on two parallel visual geometry group architectures and machine learning classifiers. IEEE access, 10(n/a), 62110–28. DOI: 10.1109/ACCESS.2022.3182498