Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Sciences

Using Order Texture Statistics to Classify Multi-Class Malware

(Raaed Fadhil Mohammed)

Abstract

The most significant challenge in the security of information and communication networks is the escalating number of malware types, followed by the search for appropriate methods to protect systems against them, which is one of the most critical concerns of programmers and information security specialists, along with the prompt recognition and identification of methods to combat malicious effects, such as malware. The purpose of this study is to use static and dynamic analytic approaches, as well as first- and second-order texture statistics, to detect and classify multi-class malware. The most important conclusions reached were that the order texture statistics approach provides better results than traditional methods (decision tree algorithm and naïve Bayes algorithm) in terms of improving precision, detection rate and false alarm rate, indicating the algorithm’s efficacy in cyberattack detection systems.
KEYWORDS
statistics approach, naïve Bayes, decision tree, cyberattack, static analysis, machine learning

PDF

References

Akhtar, M.S. and Feng, T. (2022). Malware analysis and detection using machine learning algorithms. Symmetry, 14(11), 2304. DOI: 10.3390/sym14112304 
Alani, M.M. (2021). Big data in cybersecurity: A survey of applications and future trends. Journal of Reliable Intelligent Environments, 7(2), 85–114. DOI: 10.1007/s40860-020-00120-3
Arsenault, E., Yoonessi, A. and Baker, C. (2011). Higher order texture statistics impair contrast boundary segmentation. Journal of Vision, 11(10), 1. DOI: 10.1167/11.10.14
Arya, U. (2024). Digital Tools for effective web searching. In: Handbook of Digital Journalism: Perspectives from South Asia (217–228). Singapore: Springer Nature Singapore. DOI: 10.1007/978-981-99-6675-2_19
Aslan, Ö.A. and Samet, R. (2020). A comprehensive review on malware detection approaches. IEEE Access, 8 (n/a), 6249–71. DOI: 10.1109/ACCESS.2019.2963724
Azmi, R. (2019, July). Revisiting cyber definition. In European Conference on Cyber Warfare and Security, (22–30). Academic Conferences International Limited. Available at: https://www.proceedings.com/content/049/049816webtoc.pdf (accessed on 13/12/2024)
Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R. and Wiener, J. (2000). Graph structure in the web. Computer Networks, 33(1-6), 309–20. DOI: 10.1016/S1389-1286(00)00083-9
Butt, U.J., Abbod, M.F. and Kumar, A. (2020). Cyber threat ransomware and marketing to networked consumers. In: Handbook of Research on Innovations in Technology and Marketing for the Connected Consumer, (155–185). IGI Global. DOI: 10.4018/978-1-7998-0131-3.ch008
Ding, Y., Dai, W., Yan, S. and Zhang, Y. (2014). Control flow-based opcode behavior analysis for malware detection. Computers and Security, 44 (n/a), 65–74. DOI: 10.1016/j.cose.2014.04.003
Dipert, R.R. (2016). The ethics of cyberwarfare. In: Military Ethics and Emerging Technologies (159–185). Routledge. DOI: 10.4324/9781315766843
Dutta, N., Jadav, N., Tanwar, S., Sarma, H.K.D., Pricop, E., Dutta, N. and Pricop, E. (2022). Introduction to malware analysis. Cyber Security: Issues and Current Trends, 995, 129–41. DOI: 10.1007/978-981-16-6597-4_7
Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z. and Mao, L. (2019). MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Computers and Security, 83(n/a), 208–33.       DOI: 10.1016/j.cose.2019.02.007
Hung, C.C., Song, E., Lan, Y., Hung, C.C., Song, E. and Lan, Y. (2019). Image Texture, Texture Features, and Image Texture Classification and Segmentation. Image Texture Analysis: Foundations, Models and Algorithms, 3–14. Springer.  DOI: 10.1007/978-3-030-13773-1_1
Jacksi, K. and Abass, S.M. (2019). Development history of the world wide web. Int. J. Sci. Technol. Res, 8(9), 75–9. Available at: https://www.ijstr.org/final-print/sep2019/Development-History-of-The-World-Wide-Web.pdf (accessed on 13/12/2024)
Ji, L., Zhi, X., Zhu, S. and Fraedrich, K. (2019). Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather and Forecasting, 34(2), 377–92. DOI: 10.1175/WAF-D-18-0093.1
Loh, W.Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23. DOI: 10.1002/widm.8
Mishra, S., Alotaibi, W.B., Alshehri, M. and Saxena, S. (2022). Cyber-attacks visualisation and prediction in complex multi-stage network. International Journal of Computer Applications in Technology, 68(4), 345–56. DOI: 10.1504/ijcat.2022.125180
Pathak, S., Mishra, I. and Sweta Padma, A. (2018). An assessment of decision tree-based classification and regression algorithms. In: 2018 3rd International Conference on Inventive Computation Technologies (ICICT) (92–95). IEEE. DOI: 10.1109/ICICT43934.2018.9034296
Sammut, C. and Webb, G.I. (2017). Encyclopedia of Machine Learning and Data Mining. Springer Publishing Company, Incorporated. Available at: https://link.springer.com/referencework/10.1007/978-1-4899-7687-1 (accessed on 13/12/2024)
Seneviratne, O. and Hendler, J. (Eds.). (2023). Linking the World’s Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web. New York, USA: ACM Books. DOI: 10.1145/3591366
Singh, A.P. and Singh, M.D. (2014). Analysis of host-based and network-based intrusion detection system. International Journal of Computer Network and Information Security, 6(8), 41–7. DOI: 10.5815/ijcnis.2014.08.06
Song, Y.Y. and Ying, L.U. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130.   DOI: 10.11919/j.issn.1002-0829.215044
Tan, Y., Sengupta, S. and Subbalakshmi, K.P. (2011). Analysis of coordinated denial-of-service attacks in IEEE 802.22 networks. IEEE Journal on Selected Areas in Communications, 29(4), 890–902. DOI: 10.1109/JSAC.2011.110419
Ullah, F., Javaid, Q., Salam, A., Ahmad, M., Sarwar, N., Shah, D. and Abrar, M. (2020). Modified decision tree technique for ransomware detection at runtime through API calls. Scientific Programming, 2020(1), 8845833.    DOI: 10.1155/2020/8845833
Viswanath, G. and Krishna, P.V. (2021). Hybrid encryption framework for securing big data storage in multi-cloud environment. Evolutionary Intelligence, 14(2), 691–8.    DOI: 10.1007/s12065-020-00404-w
Webb, G.I., Keogh, E. and Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of Machine Learning, 15(1), 713–4. DOI: 10.1007/978-0-387-30164-8