Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Sciences

Characterising Optical Properties of Doped Metal Complex Nanocomposite Films with PVA/PVAC for Optoelectronics

(Dawood Salman Abd Al-Kader and Harakat Mohsin Roomy)

Abstract

This study investigates the optical properties of nanocomposite films made from polyvinyl alcohol (PVA), polyvinyl acetate (PVAC), and a 50/50 polyblend of PVA and PVAC, doped with varying concentrations 0, 3, 6, and 9 wt.% of the metal complex Fluoro pentaamine cobalt (III) fluoride [Co(NH₃)₅F]F₂ (FACF). The films were prepared using a solvent casting method and analysed with a computerised UVـــVISـــIR spectrophotometer over the wavelength range of 250–850 nm. Key optical parameters, including the refractive index, extinction coefficient, and optical conductivity, were determined through absorption studies. The optical absorbance increased with higher FACF concentrations. UV-Vis spectra were used to estimate the band gap energies and investigate the electronic transitions from the valence band to the conduction band. A decrease in the band gap for allowed direct transitions was observed: from 4.0 eV to 2.55 eV for PVA, 4.1 eV to 2.6 eV for PVAC, and 4.35 eV to 2.6 eV for the polyblend as the FACF content increased. Additionally, both the extinction coefficient and refractive index increased with higher FACF concentrations. These nanocomposite films show potential for use in photovoltaic cells, optical sensors, LEDs, photodetectors and other luminescent devices, though further research is needed.
KEYWORDS
absorbance spectrum, casting method, energy gap, polyblend, polyvinyl acetate, polyvinyl alcohol

PDF

References

Abdelaziz, M. (2012). Optical and dielectric properties of poly (vinylacetate)/lead oxide composites. Journal of Materials Science: Materials in Electronics, 23(n/a), 1378–86. DOI: 10.1007/s10854-011-0602-8
Abdelrazek, E.M. and Elashmawi, I.S. (2008). Characterisation and physical properties of CoCl2 filled polyethyl‐methacrylate films. Polymer Composites, 29(9), 1036–43. DOI: 10.1002/pc.20481
Agrawal, P.K., Sharma, P., Singh, V.K. and Chauhan, S. (2023). A comprehensive review on the engineering of biocompatible polyvinyl alcohol composites with enhanced properties using carbonaceous fillers. Journal of Materials and Environmental Science, 14(5), 560–81.
Ahmad, A.H., Awatif A.M, Zeid and Abdul-Majied N. (2007). Dopping effect on optical constants of polymethylmethacrylate (PMMA). Engineering and Technology Journal, 25(4), 558–68
Aruldass, S., Mathivanan, V., Mohamed, A.R. and Tye, C.T. (2019). Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. Journal of Environmental Chemical Engineering, 7(5), 103238. DOI: 10.1016/j.jece.2019.103238
Aziz, S.B., Mamand, S.M., Saed, S.R., Abdullah, R.M. and Hussein, S.A. (2017). New method for the development of plasmonic metal‐semiconductor interface layer: polymer composites with reduced energy band gap. Journal of Nanomaterials, 2017(1), 8140693. DOI: 10.1155/2017/8140693
Balkanski, M. (1980). Optical properties of solids. Crystal Research and Technology, 15(10)1122. DOI: 10.1002/crat.19800151004
Beckers, M., Schlüter, T., Gries, T., Seide, G. and Bunge, C.A. (2017). Fabrication techniques for polymer optical fibres. In: C.A. Bunge, T. Gries, M. Beckers (eds.) Polymer Optical Fibres, pp.187–199. Elsevier: Woodhead Publishing. DOI: 10.1016/B978-0-08-100039-7.00006-3
Bhagyaraj, S., Oluwafemi, O.S. and Krupa, I. (2020). Polymers in optics. In: M.A.A., AlMaadeed, D., Ponnamma and M.A., Carignano (eds.) Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments. Elsevier. pp. 423–55. Elsevier. DOI:10.1016/B978-0-12-816808-0.00013-5
Bulinski, M. (2021). Metal doped PVA films for opto-electronics-optical and electronic properties, an overview. Molecules, 26(10), 2886. DOI: 10.3390/molecules26102886
Chan, W.T.K. and Wong, W.T. (2013). A brief introduction to transition metals in unusual oxidation states. Polyhedron, 52(n/a), 43–61. DOI: 10.1016/j.poly.2012.09.004
Elattar, R.H., El-Malla, S.F., Kamal, A.H. and Mansour, F.R. (2024). Applications of metal complexes in analytical chemistry: A review article. Coordination Chemistry Reviews, 501(n/a), 215568. DOI: 10.1016/j.ccr.2023.215568
Gadhave, R.V.I. and Dhawale, P.V. (2022). State of research and trends in the development of polyvinyl acetate-based wood adhesive. Open Journal of Polymer Chemistry, 12(1), 13–42. DOI: 10.4236/ojpchem.2022.121002.
Hassan, D. and Ah-yasari, A.H. (2019). Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application. Bulletin of Electrical Engineering and Informatics, 8(1), 52–7. DOI:10.11591/eei.v8i1.1019
Kettle, S.F.A. (2013). Physical Inorganic Chemistry: A coordination Chemistry Approach. Springer.
Khalifa, M., El Sayed, A.M., Kassem, S.M. and Tarek, E. (2024). Synthesis, structural, optical, and thermal properties of LaFeO3/Poly (methyl methacrylate)/Poly (vinyl acetate) nanocomposites for radiation shielding. Scientific Reports, 14(1), 3672. DOI: 10.1038/s41598-024-54207-5
Loste, J., Lopez-Cuesta, J.M., Billon, L., Garay, H. and Save, M. (2019). Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Progress in Polymer Science, 89(n/a), 133–58. DOI: 10.1016/j.progpolymsci.2018.10.003
Mohammed, M.K., Abbas, M.H., Hashim, A., Rabee, R.H., Habeeb, M.A. and Hamid, N. (2022). Enhancement of optical parameters for PVA/PEG/Cr2O3 nanocomposites for photonics fields. Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials, 32(4), 205–9. DOI: 10.18280/rcma.320406
Palanichamy, K., Anandan, M., Sridhar, J., Natarajan, V. and Dhandapani, A. (2023). PVA and PMMA nano-composites: A review on strategies, applications and future prospects. Materials Research Express, 10(2), 022002. DOI: 10.1088/2053-1591/acb527.
Rabee, B.H., Hashim, A., Salman, S.R., Abbas, A.K., Rashid, F.L. and Ahmed, H. (2013). Preparation of [Co (NH3) 5Cl] Cl2 complexes and characterization of (PVA-[Co (NH3) 5Cl] Cl2]) composites. Chemistry and Materials Research, 3(7), 50–4.
Salman, S.A., Khodair, Z.T. and Abed, S.J. (2015). Study the effect of substrate temperature on the optical properties of cofe2o4 films prepared by chemical spray pyrolysis method. International Letters of Chemistry, Physics and Astronomy, 61(n/a), 118–27. DOI: 10.56431/p-5agw6p
Schönherr, T. (Ed.). (2004). Optical Spectra and Chemical Bonding in Transition Metal Complexes: Special Volume II, Dedicated to Professor Jørgensen, (Vol. 107). Springer.
Sharma, P., Agrawal, P.K., Singh, V.K., Chauhan, S. and Bhaskar, J. (2023). A comprehensive review on properties of polyvinyl alcohol (PVA) crosslinked with carboxylic acid. Journal of Materials and Environmental Science, 14(10), 1236–52.
Van Eldik, R., Palmer, D.A. and Kelm, H. (1978). Mechanistic information from the effects of pressure on the kinetics of the reduction of Co (NH3) 5F2+, Co (NH3) 5Cl2+ and Co (NH3) 5Br2+ by iron (II) in dimethylsulphoxide. Inorganica Chimica Acta, 29(n/a), 253–9. DOI:10.1016/S0020-1693(00)89657-7
Yam, V.W.W. and Lo, K.K.W. (1999). Recent advances in utilisation of transition metal complexes and lanthanides as diagnostic tools. Coordination Chemistry Reviews, 184(1), 157–240. DOI: 10.1016/S0010-8545(98)00262-8
Zhong, Y., Lin, Q., Yu, H., Shao, L., Cui, X., Pang, Q. and Hou, R. (2024). Construction methods and biomedical applications of PVA-based hydrogels. Frontiers in Chemistry, 12(n/a), 1376799. DOI: 10.3389/fchem.2024.1376799
Zidan, H.M., Tawansi, A. and Abu-Elnader, M. (2003). Miscibility, optical and dielectric properties of UV-irradiated poly (vinylacetate)/poly (methylmethacrylate) blends. Physica B: Condensed Matter, 339(2-3), 78–86. DOI: 10.1016/j.physb.2003.08.054.