Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Potential of Honey Bee Propolis and Venom as Eco-friendly Control Agents in Galleria mellonella L.

(Amro Ahmed Taha , Mohamed Samir Younis , Heba A. Al-Ghanam and Doaa Abd El-Maksoud Abou El-Atta )

Abstract

The study was conducted to determine the toxicity approach of four honey bee propolis and venom concentrations, 500, 1,000, 2,000 and 3,000 ppm, regarding the biological aspects of the wax moth larvae Galleria mellonella L. Using 2,000 and 3,000 ppm propolis concentrations gave a 100% reduction percentage on wax moth larvae after spraying the treatment for 72 and 48 hours consistently. Applying 3,000 ppm of bee venom resulted in a 100% mortality percentage for the three test times of 24, 48 and 72 hours. The lowest period of larval development was observed when propolis was used at a concentration of 3,000 ppm, with an average of 7.66±0.33 days. At the 3,000 and 2,000 ppm concentrations of propolis, the pupal stage was unable to develop for adults of the insect, as all the individuals died. For bee venom, at concentrations of 3,000 and 2,000 ppm, none of the larvae have succeeded in the development of pupa or adult insects. Bee venom was the most effective substance against wax moth larvae, followed by propolis; LC50 values were 272.62 and 3,166.42 ppm, respectively. These results clarified the need for more research to affirm their effect in the field and on honey bees. 
KEYWORDS
Biological aspects, mortality rate, natural substances, suppression materials, toxicity, wax moths

PDF

References

Adel, M.M. (2012). Lufenuron impair the chitin synthesis and development of Spodoptera littoralis Bosid. (Lepidoptera: Noctuidae). Journal of Applied Science Research, 8(5), 2766–2775.
Amany, S.M. Abou-Lila, Taha, A. A. and Younis, M. S. (2021). Evaluation of Dismate (PE) pheromone and its comparison by some chemicals control against wax moths under storage conditions at Menoufia Governorate, Egypt. Egyptian Journal of Plant Protection Research Institute, 4 (3), 409–414. DOI:10.21608/jppp.2015.75301 
Ararso, Z. and Legesse, G. (2016). Insecticidal action of honeybees propolis extract against larvae of lesser wax moth. Agric. Biol. JN Am, 7(6), 302–306. DOI:10.5251/abjna.2016.7.6.302.306
Assar, A.A., Abo El-Mahasen, M.M., Dahi, H.F. and Amin, H.S. (2016). Biochemical effects of some insect growth regulators and bioinsecticides against cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera Noctuidae). Journal of Bioscience and Applied Research, 2(8), 587–594. DOI:10.21608/jbaar.2016.108937
Bouaziz, A., Boudjelida, H. and Soltani, N. (2011). Toxicity and perturbation of the metabolite contents by a chitin synthesis inhibitor in the mosquito larvae of Culiseta longiareolata. Annals of biological research, 2(3), 134–142. 
Bradbear, N. (2004). Beekeeping and sustainable livelihoods. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/d968717a-7970-4e5a-b628-b837408c8985/content (accessed on 02/11/2024)
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248–254. DOI:10.1006/abio. 1976.9999  
Chapman, R.F. (2012). The Insects: Structure and Function. 5th edition. Cambridge, Cambridge University Press. DOI:10.1017/cbo9781139035460 
CoStat Software (2004) Microcomputer Program Analysis, Version 6.303. CoHort Software, Monterey, CA. Available at: https://cohortsoftware.com/costat.html (accessed on 30/10/2024)
El-Kholy, E.M.S. and Mikhaiel, A.A. (2008). Scanning electron microscopy on the male antennae of the greater wax moth, Galleria mellonella (L.), treated with gamma radiation. Isotope and Radiation Research, 40(3), 603–613.
Ellis, J.D., Graham, J.R. and Mortensen, A. (2013). Standard methods for wax moth research. Journal of Apicultural Research, 52(1), 1–17. DOI:10.3896/IBRA.1.52.1.10
Garedew, A., Schmolz, E. and Lamprecht, I. (2004). Effect of the bee glue (propolis) on the calorimetrically measured metabolic rate and metamorphosis of the greater wax moth Galleria mellonella. Thermochimica Acta, 413(1-2), 63–72.
Ghoneim, K. (2020). Toxicity and Deleterious Impacts of the Deathstalker Scorpion, Leiurus quinquestriatus, Venom on Development of the Greater Wax Moth, Galleria mellonella (Lepidoptera: Pyralidae). Egyptian Academic Journal of Biological Sciences. A, Entomology, 13(4), 199–211. DOI:10.21608/ eajbsa.
Ghoneim, K.S., Mohamed, H.A. and Bream, A.S. (2000). Efficacy of the neem seed extract, neemazal, on growth and development of the Egyptian cotton leafworm, Spodoptera littoralis Boisd (Lepidoptera: Noctuidae). Journal-Egyptian German Society Of Zoology, 33(E), 161–180.
Ghoneim, K., Hamadah, Kh., Tanani, M., Abdel-Khaliq, A., Emam, D.  (2019a). Toxicity and Disruptive Impacts of the Honeybee Apitoxin on Growth and Development of The Greater Wax Moth, Galleria mellonella (Lepidoptera: Pyralidae). Egyptian Academic Journal of Biological Sciences, F. Toxicology and Pest Control, 11(2), 97–106. DOI:10.21608/eajbsf.2019.45537 
Ghoneim, K., Tanani, M., Hamadah, Kh.,Abdel-Khaliq, A. and Emam, D. (2019b). Deteriorated adult performance and reproduction of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) by the honey bee Apitoxin. Egyptian Academic Journal of Biological Sciences (A. Entomology). 12(4), 95–108. DOI:10.21608/eajbsa.2019.45828
Hussein, H.M., Hadi, M.H. and Hassoni, A.A. (2022). Evaluation of the efficiency of alcoholic propolis extract and Bacillus thuringiensis in the mortality rate of the third larval age of the great wax Moth Galleria mellonella (L.). International Journal of Health Sciences, 6(S2),11413–11419. DOI:10.53730/ ijhs.v6ns2.8273. 
Izhar-ul-Haq, M., Muhammad, S. and Sohail, A. (2008). Effect of neem Azadirachta indica seed extracts against greater wax moth Galleria mellonella L. larvae. Pakistan Entomological Society, Pakistan Entomologist, 30(2): 137–140.
James, R.R. (2011). Potential of ozone as a fumigant to control pests in honey bee (Hymenoptera: Apidae) hives. Journal of Economic Entomology, 104(2), 353–359. DOI:10.1603/ec10385.
Joseph A.K., Shauna A., James M.R. (1972). Chemical basis of the sulfophospho-vanillin reaction for estimating total serum lipid. Clinical Chemistry, 18(3), 198–201. DOI:10.1093/clinchem/18.3.199 
Kaufmann, C. and Brown, M.R. (2008). Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae. Journal of insect physiology, 54(2), 367–377. DOI:10.1016/j.jinsphys.2007.10.007 
Kong, H.G., Kim, H.H., Chung, J.H., Jun, J., Lee, S., Kim, H.M. and Ryu, C.M. (2019). The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell reports, 26(9), 2451–2464. DOI:10.1016/j.celrep.2019.02.018 
Kosuge, T. (1969). The role of phenolics in host response to infection. Annual Reviews, 7(n/a),195–222. DOI: 10.1146/annurev.py.07.090169.001211
Linton, Y.M., Nisbet, A.J. and Mordue, A.J. (1997). The effects of azadirachtin on the testes of the desert locust, Schistocerca gregaria (Forskål). Journal of Insect Physiology, 43(11), 1077–1084. DOI:10.1016/s0022-1910(97)00060-7 
Mahgoub, M.O., Lau, W.H., Omar, D.B. and El Naim, A.M. (2018). Evaluation the toxicity of honey bee venom on Achroia grisella developmental stages. World Journal of Agricultural Research, 6(1), 5–9. DOI: 10.12691/wjar-6-1-2
Naqqash, M.N., Gökçe, A., Bakhsh, A. and Salim, M. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitology research, 115(n/a), 1363–1373. DOI:10.1007/s00436-015-4898-9 
Netíková, L., Bogusch, P. and Heneberg, P. (2013). Czech ethanol‐free propolis extract displays inhibitory activity against a broad spectrum of bacterial and fungal pathogens. Journal of Food Science, 78(9), M1421–M1429. DOI:10.1111/1750-3841.12230 
Owayss, A.A. and Abd-Elgayed, A.A. (2007). Potential efficacy of certain plant volatile oils and chemicals against greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Entomological Society of Egypt (Economic Series), 33(n/a), 67–75.
Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova‐Damyanova, B., Sabatini, A. G. and Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplar‐type propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 15(4), 235-240. DOI:10.1002/pca.777
Possani, L.D., Becerril, B., Delepierre, M. and Tytgat, J. (1999). Scorpion toxins specific for Na+‐channels. European journal of biochemistry, 264(2), 287–300. DOI:10.1046/j.1432-1327.1999.00625.x 
Resmitha, C., Reshma, R.M., Punathumparambath, B. and Vadakkadath Meethal, K. (2014). The ecdysone mimic, methoxyfenozide, alters the level of major haemolymph proteins in the larvae of Spodoptera mauritia Boisd.(Lepidoptera: Noctuidae). Acta Biologica Indica, 3(2), 726–730.
Sanad, R.E. and Mohanny, K.M. (2015). Toxicological and biological effects of propolis and three plant extracts on the greater wax moth, Galleria mellonella L. Egyptian Journal of Biological Pest Control, 25(1), 213–219.
Shimanuki, H., and Knox, D.A. (1997) Summary of control methods. In: Morse, R.A., and Flottum, K. (eds) Honey Bee Pests, Predators and Diseases. Medina, USA: Root company
Singh, N.B. and Sinha, R.N. (1977). Carbohydrates, lipids and protein in the developmental stages of Sitophillus oryzea and Sitophillus grannarius. Annals of the Entomological Society of America, 70(1), 107–111. DOI:10.1093/aesa/70. 1.107 
Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. 7th ed. Iowa State, USA: University Press, Ames.
Tanani, M., Ghoneim, K., Hamadah, K. and Emam, D. (2021). Comparative impairing effects of selected arthropod venoms on the main body metabolites of Galleria mellonella (Lepidoptera: Pyralidae). African Journal of Biological Sciences, 3(3), 64–79. DOI:10.33472/afjbs.3.3.2021.64-79 
Tsegaye, A., Wubie, A.J., Eshetu, A.B. and Lemma, M. (2014). Evaluation of different non-chemical wax moth prevention methods in the backyards of rural beekeepers in the North West dry land areas of Ethiopia. IOSR Journal of Agriculture and Veterinary Science, 7(3), 29–36. DOI:10.9790/2380-07312936 
Wiesner, A. (1993). Die Induktion der Immunabwehr eines Insekts (Galleria mellonella, Lepidoptera) durch synthetische Materialien und arteigne Haemolymphfaktoren.  “Induction of the immune defense of an insect (Galleria mellonella, Lepidoptera) by synthetic materials and species-specific haemolymph factors”. Ph. D Thesis ,  Berline, Germany.
Zhou, G. and Miesfeld, R.L. (2009). Energy metabolism during diapause in Culex pipiens mosquitoes. Journal of insect physiology, 55(1), 40–46. DOI:10.1016/j.jinsphys.2008.10.002