Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Histological Study and Chemical Composition of Apium graveolens: In Vivo Antimicrobial Activity

(Imane Abdelsadok , Karima Ouldyerou , Boumediene Meddah , and Pascal Sonnet )

Abstract

The purpose of the current investigation is to evaluate the methanolic extract from Apium graveolens seeds for chemical composition and in vivo antimicrobial activity, supported by a histological study. The chemical profile of the methanolic extract was identified using high-performance liquid chromatography diode array detector analysis. The toxicity and antimicrobial effects of the methanolic extract were examined through in vivo experiments on rats weighing 220 ± 5 g. The histological study was conducted using the rats’ ileum. The methanolic extract (80%) contained sinapic acid (49.9%), ascorbic acid (25.4%), butylated hydroxyanisole acid (6.1%), and quercetin (8.2%), with a yield ratio of 11.74%. The dose of 50 mg/kg of the methanolic extract did not lead to animal lethality or toxicity symptoms. Two days after treatment, the blood cultures of all females treated with the methanolic extract at 50 mg/kg showed sterility (100%). The same result appeared on the fifth day after treatment in all males of the same group. Histopathological examination revealed normal and well-preserved architecture of the ileum in both sexes. The study concludes that the methanolic extract of Apium graveolens possesses significant antimicrobial capacity.
KEYWORDS
Anatomopathology, celery, chemical compounds, enteric infection, HPLC, rats
PDF

References

Aghababaei, F. and Hadidi, M. (2023). Recent advances in potential health benefits of quercetin. Pharmaceuticals, 16(7), 1020. DOI: 10.3390/ph16071020
Al-Aboody, M.S. (2021). Cytotoxic, antioxidant, and antimicrobial activities of Celery (Apium graveolens L.). Bioinformation, 17(1), 147.DOI:10.6026/97320630017147
Al-Asmari, A.K., Athar, M.T. and Kadasah, S.G. (2017). An updated phytopharmacological review on medicinal plant of Arab region: Apium graveolens linn. Pharmacognosy Reviews, 11(21), 13. DOI: 10.4103/phrev.phrev_35_16
Chouikh, A., Rebiai, A., Aref, M., Heded, M., Adjal, E.H. and Alia, F. (2020). Effects of extraction methods on total polyphenols, free radical scavenging and antibacterial activity of crude extracts of Cleome arabica L. growing in Oued Souf region. Algerıan Journal of Bıosceınces, 1(1), 14–7. DOI: 10.5281/zenodo.4051407
Burdejova, L., Tobolkova, B., Polovka, M. and Neugebauerova, J. (2023). Differentiation of medicinal plants according to solvents, processing, origin, and season by means of multivariate analysis of spectroscopic and liquid chromatography data. Molecules, 28(10), 4075. DOI: 10.3390/molecules28104075
Chaudhry, F., Ahmad, M.L., Hayat, Z., Ranjha, M.M.A.N., Chaudhry, K., Elboughdiri, N. and Uddin, J. (2022). Extraction and evaluation of the antimicrobial activity of polyphenols from banana peels employing different extraction techniques. Separations, 9(7), 165. DOI : 10.3390/separations9070165
Cheng, J., Liu, Y., Li, S., Pu, K., Yang, L. and Tan, L. (2024). Incidence of and Risk Factors for Third-Generation Cephalosporin-Resistant Escherichia coli Bloodstream Infections in Children. Infection and Drug Resistance,17(n/a),  543–50. DOI: 10.2147/IDR.S449731
Edziri, H., Ammar, S., Souad, L., Mahjoub, M.A., Mastouri, M., Aouni, M. and Verschaeve, L. (2012). In vitro evaluation of antimicrobial and antioxidant activities of some Tunisian vegetables. South African Journal of Botany, 78(n/a), 252–6. DOI:10.1016/j.sajb.2011.09.012
ElNaker, N.A., Daou, M., Ochsenkühn, M.A., Amin, S.A., Yousef, A.F. and Yousef, L.F. (2021). A metabolomics approach to evaluate the effect of lyophilization versus oven drying on the chemical composition of plant extracts. Scientific Reports, 11(1), 22679. DOI: 10.1038/s41598-021-02158-6
Ghoname, E.S.A., Hassan, D. and Hammad, E.M. (2023). Antimicrobial Activity of Dill Seeds and Celery Seeds on Beef Burger. European Journal of Nutrition and Food Safety, 15(9), 106–17. DOI:10.9734/ejnfs/2023/v15i91339
Hassuna, N.A., Rabie, E.M., Mahd, W.K.M., Refaie, M.M., Yousef, R.K.M. and Abdelraheem, W.M. (2023). Antibacterial effect of vitamin C against uropathogenic E. coli in vitro and in vivo. BMC Microbiology, 23(1), 112. DOI:10.1186/s12866-023-02856-3
Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M.C. and Rahu, N. (2016). Oxidative stress and inflammation: What polyphenols can do for us?. Oxidative Medicine and Cellular Longevity, 2016(1), 7432797. DOI:10.1155/2016/7432797
Jang, S., Kim, S., So, B.R., Kim, Y., Kim, C.K., Lee, J.J. and Jung, S.K. (2023). Sinapic acid alleviates inflammatory bowel disease (IBD) through localization of tight junction proteins by direct binding to TAK1 and improves intestinal microbiota. Frontiers in Pharmacology, 14(n/a), 1217111.DOI:10.3389/fphar.2023.1217111
Khalil, A., Nawaz, H., Ghania, J.B., Rehman, R.and Nadeem, F. (2015). Value added products, chemical constituents and medicinal uses of celery (Apium graveolens L.)–A review. International Journal of Chemical and Biochemical Sciences, 8(2015), 40–8.
Khotimah, H., Diyantoro, D.W.I. and Sundari, A.S. (2020). Screening in vitro antimicrobial activity of celery (Apium graveolens) against Staphylococcus Sp. Malays. J. Med. Health Sci, 16(n/a), 72–7. 
Kim, M.A., Lee, H.J., Bae, H.G., Yang, S.O., Lee, H.J. and Kim, M.J. (2021). Metabolite analysis and anti-obesity effects of celery seed in 3T3-L1 adipocytes. Food Science and Biotechnology, 30(n/a), 277–86. DOI:10.1007/s10068-020-00866-9
Kolesnichenko, S.I., Lavrinenko, A.V. and Akhmaltdinova, L.L. (2021). Bloodstream infection etiology among children and adults. International Journal of Microbiology, 2021(1), 6657134. DOI:10.1155/2021/6657134
Kooti, W. and Daraei, N. (2017). A review of the antioxidant activity of celery (Apium graveolens L). Journal of Evidence-Based Complementary &Alternative Medicine, 22(4), 1029–34. DOI:10.1177/2156587217717415
Liu, D.K., Xu, C.C., Zhang, L., Ma, H., Chen, X.J., Sui, Y.C. and Zhang, H.Z. (2020). Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. International Journal of Food Properties, 23(1), 1097–109. DOI:10.1080/10942912.2020.1778027
Majumdar, G. and Mandal, S. (2024). Evaluation of broad-spectrum antibacterial efficacy of quercetin by molecular docking, molecular dynamics simulation and in vitro studies. Chemical Physics Impact, 8(n/a), 100501. DOI: 10.1016/j.chphi.2024.100501
Malhotra, S.K. (2006). Celery. In Handbook of Herbs and Spices, 3rd ed., Elsevier, Amsterdam, The Netherlands.
Malhotra, S.K. (2012). Celery. In Handbook of Herbs and Spices, 2nd ed., Sawston, UK. 
Mezeyova, I., Hegedűsová, A., Mezey, J., Šlosár, M. and Farkaš, J. (2018). Evaluation of quantitative and qualitative characteristics of selected celery (Apium graveolens var. dulce) varieties in the context of juices production. Potravinarstvo, 12(1), 173–9. DOI: 10.5219/883
Minaiyan, M., Ghanadian, S.M. and Hossaini, M. (2021). Protective effect of Apium graveolens L.(Celery) seeds extracts and luteolin on acetic acid-induced colitis in rats. International Journal of Preventive Medicine, 12(1), 100. DOI:10.4103/ijpvm.IJPVM_651_20
Nithya, R. and Subramanian, S. (2017). Antioxidant properties of sinapic acid: In vitro and in vivo approach. Asian Journal of Pharmaceutical and Clinical Research, 10(6), 255. DOI:10.22159/ajpcr.2017.v10i6.18263
Organization for Economic Cooperation and Development (OECD) (2008). Repeated Dose Oral Toxicity Test Method. OECD Guidelines for Testing of Chemicals. Paris, France: OECD. 
Penna, C., Marino, S., Vivot, E., Cruañes, M.C., Muñoz, J.D.D., Cruañes, J. and Martino, V. (2001). Antimicrobial activity of Argentine plants used in the treatment of infectious diseases. Isolation of active compounds from Sebastianiabrasiliensis. Journal of Ethnopharmacology, 77(1), 37–40. DOI: 10.1016/s0378-8741(01)00266-5
Pokharel, P., Dhakal, S. and Dozois, C.M. (2023). The diversity of Escherichia coli pathotypes andvaccination strategies against this versatile bacterial pathogen. Microorganisms., 11(2), 344.DOI: 10.3390/microorganisms11020344
Powanda, M.C. and Rainsford, K.D. (2011). A toxicological investigation of a celery seed extract having anti-inflammatory activity. Inflammopharmacology, 19(4), 227–33. DOI:10.1007/s10787-010-0049-1
Prakoso, Y.A., Rini, C.S., Rahayu, A., Sigit, M. and Widhowati, D. (2020). Celery (Apium graveolens) as a potential antibacterial agent and its effect on cytokeratin-17 and other healing promoters in skin wounds infected with methicillin-resistant Staphylococcus aureus. Veterinary World, 13(5), 865. DOI: 10.14202/vetworld.2020.865-871
Qi, W., Qi, W., Xiong, D. and Long, M. (2022). Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 27(19), 6545. DOI: 10.3390/molecules27196545
Rani, P. and Khullar, N. (2004). Antimicrobial evaluation of some medicinal plants for their anti‐enteric potential against multi‐drug resistant salmonella typhi. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(8), 670–3. DOI: 10.1002/ptr.1522
Roslon, W., Osinska, E. and Gajc-Wolska, J. (2009, April). The influence of raw material stabilization on the quality of celery (Apium graveolens L.) leaves. In VI International Postharvest Symposium 877(n/a),  201–8. DOI:10.17660/ActaHortic.2010.877.20
Salehi, B., Venditti, A., Frezza, C., Yücetepe, A., Altuntaş, Ü., Uluata, S. and Sharifi-Rad, J. (2019). Apium plants: Beyond simple food and phytopharmacological applications. Applied Sciences, 9(17), 3547. DOI: 10.3390/app9173547
Singh, K., Coopoosamy, R.M., Gumede, N.J. and Sabiu, S. (2022). Computational insights and in vitro validation of antibacterial potential of shikimate pathway-derived phenolic acids as NorA efflux pump inhibitors. Molecules, 27(8), 2601. DOI: 10.3390/molecules27082601
Sorour, M.A., Hassanen, N.H. and Ahmed, M.H. (2015). Natural antioxidant changes in fresh and dried celery (Apium graveolens). Am. J. Energy Eng, 3(2-1), 12–6. DOI:10.11648/j.ajee.s.2015030201.13
Sowbhagya, H.B. (2014). Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): An overview. Critical Reviews in Food Science and Nutrition, 54(3), 389–98. DOI:10.1080/10408398.2011.586740
Uddin, Z., Shad, A.A., Bakht, J., Ullah, I. and Jan, S. (2015). In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium graveolens. Pakistan Journal of Pharmaceutical Sciences, 28(5). 1699–704.
Vahidi, A., Ebrahim Rezvani, M., Ramezani, V., Boroumand, M. and Jahani, Y. (2019). Evaluation of anti-nociceptive and anti-inflammatory activities of Apium graveolens L. roots extract in mice. Research Journal of Pharmacognosy, 6(3), 69–75. DOI:10.22127/rjp.2019.89467
Wang, S., Yao, J., Zhou, B., Yang, J., Chaudry, M.T., Wang, M. and Yin, W. (2018). Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 81(1), 68–78. DOI: 10.4315/0362-028X.JFP-17-214
Xiao, S., Tang, C., Zeng, Q., Xue, Y., Chen, Q., Chen, E. and Han, L. (2022). Antimicrobial resistance and molecular epidemiology of Escherichia coli from bloodstream infection in Shanghai, China, 2016–2019. Frontiers in Medicine, 8(n/a), 803837. DOI: 10.3389/fmed.2021.803837
Yunana, B.T., Guiyi, J.C. and Bukar, B.B. (2018). In vitro and in vivo evaluation of antibacterial activity of Bridelia ferrugine extracts on some clinical isolates. The Journal of Phytopharmacolog., 7(4), 392–8. DOI: 10.31254/phyto.2018.7407
Ziyan, L., Yongmei, Z., Nan, Z., Ning, T. and Baolin, L. (2007). Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Medica, 73(3), 221–6. DOI:10.1055/s-2007-967122