Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Evaluating the Performance of Mixed Zero-Inflated Poisson Regression Models with Time-dependent and Time-independent Covariates

(Gadir Alomair)

Abstract

One of the issues that researchers may encounter in count data is having many zeros. One of the solutions to model these data is using zero-inflated Poisson (ZIP) regression models. Recently, researchers have started to model longitudinal count data with time-dependent covariates. However, it has not been considered whether a model with time-dependent covariates provides a better fit than a model with time-independent covariates. In this paper, the fit between a mixed ZIP model with time-dependent covariates and a mixed ZIP model with time-independent covariates is compared using simulation. Using the deviance information criterion as a measure of fit, we found that the model with time-dependent covariates exhibits a better fit than the model with time-independent covariates.
KEYWORDS
correlated data, count data, excess zeros, longitudinal, mixed models, model fit

PDF

References

Agresti, A. (2006). An Introduction to Categorical Data Analysis. 2nd Edition. New York, USA: John Wiley and Sons, Inc. DOI: 10.1002/0470114754
Azen, R. and Walker, C. M. (2021). Categorical Data Analysis for the Behavioral and Social Sciences. 2nd Edition. USA:  Routledge.
Ballinger, G.A. (2004). Using generalized estimating equations for longitudinal data analysis. Organizational research methods, 7(2), 127–150. DOI: 10.1177/1094428104263672
Baghfalaki, T. and Ganjali, M. (2020). A transition model for analysis of zero-inflated longitudinal count data using generalized poisson regression model. REVSTAT-Statistical Journal, 18(1), 27–45. DOI: 10.57805/revstat.v18i1.288
Baghfalaki, T. and Ganjali, M. (2021). Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data. Statistical Methods in Medical Research, 30(6), 1484–1501. DOI: 10.1177/09622802211002868
Berg, A., Meyer, R. and Yu, J. (2004). Deviance information criterion for comparing stochastic volatility models. Journal of Business & Economic Statistics, 22(1), 107–120. DOI: 10.1198/073500103288619430
Burger, D.A., Schall, R., Jacobs, R. and Chen, D.G. (2019). A generalized Bayesian nonlinear mixed‐effects regression model for zero‐inflated longitudinal count data in tuberculosis trials. Pharmaceutical Statistics, 18(4), 420–432. DOI: 10.1002/pst.1933
Cameron, A.C. and Trivedi, P.K. (2013). Regression Analysis of Count Data . England: Cambridge University press.
Chen, E.Z. and Li, H. (2016). A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics, 32(17), 2611–2617. DOI: 10.1093/bioinformatics/btw308
Gibbons, R.D. and Hedeker, D. (2006). Longitudinal Data Analysis . New York, USA:  John Wiley and Sons, Inc.
Hagen, T., Reinfeld, N. and Saki, S. (2023). Modeling of Parking Violations Using Zero-Inflated Negative Binomial Regression: A Case Study for Berlin. Transportation Research Record, 2677(6), 498–512.
Hagen, T., Reinfeld, N. and Saki, S. (2023). Modeling of Parking Violations Using Zero-Inflated Negative Binomial Regression: A Case Study for Berlin. Transportation Research Record, 2677(6), 498–512. DOI: 10.1177/03611981221148703
Hall, D.B. (2000). Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study. Biometrics, 56(4), 1030–1039. DOI: 10.1111/j.0006-341x.2000.01030.x
Kamalja, K.K. and Wagh, Y.S. (2018). Estimation in zero-inflated Generalized Poisson distribution. Journal of Data Science, 16(1), 183–206. DOI: 10.6339/jds.201801_16 (1).0010
Lachenbruch, P.A. (2002). Analysis of data with excess zeros. Statistical Methods in Medical Research, 11(4), 297–302. DOI: 10.1191/0962280202sm289ra
Lalonde, T.L., Nguyen, A.Q., Yin, J., Irimata, K. and Wilson, J.R. (2013). Modeling correlated binary outcomes with time-dependent covariates. Journal of Data Science, 11(4), 715–738. DOI: 10.6339/jds.2013.11(4).1195
Lalonde, T.L. (2014). Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use. In: American Public Health Association (APHA) 142nd Annual Meeting and Exposition, New Orleans University, New Orleans, USA. 15-19/11/2014.
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. DOI: 10.2307/1269547
Liu, H. (2007). Growth curve models for zero-inflated count data: An application to smoking behavior. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 247–279. DOI: 10.1080/10705510709336746
McCullagh, P. (2019). Generalized Linear Models. Routledge. USA:  Routledge.
Mekonnen, F.H., Lakew, W.D., Tesfaye, Z.D. and Swain, P.K. (2019). Statistical models for longitudinal zero-inflated count data: application to seizure attacks. African Health Sciences, 19(3), 2555–2564. DOI: 10.4314/ahs.v19i3.31
Miller, J.M. (2007). Comparing Poisson, Hurdle, and ZIP Model Fit Under Varying Degrees of Skew and Zero-inflation. PhD Thesis, University of Florida, Florida, USA.
Min, Y. and Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data. Statistical modelling, 5(1), 1–19. DOI: 10.1191/1471082x05st084oa
Misaii, H., Fouladirad, M. and Haghighi, F. (2024). Optimal task-driven time-dependent covariate-based maintenance policy. Journal of Computational and Applied Mathematics, 435(n/a), 115315.  DOI: 10.1016/j.cam.2023.115315
Motalebi, N., Owlia, M.S., Amiri, A. and Fallahnezhad, M.S. (2023). Monitoring social networks based on Zero-inflated Poisson regression model. Communications in Statistics-Theory and Methods, 52(7), 2099–2115. DOI: 10.1080/03610926.2021.1945103
Neelon, B.H., O’Malley, A.J. and Normand, S.L.T. (2010). A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use. Statistical modelling, 10(4), 421–439. DOI: 10.1177/1471082x0901000404
Perumean-Chaney, S.E., Morgan, C., McDowall, D. and Aban, I. (2013). Zero-inflated and overdispersed: what’s one to do? Journal of Statistical Computation and Simulation, 83(9), 1671–1683. DOI: 10.1080/00949655.2012.668550
Pittman, B., Buta, E., Garrison, K. and Gueorguieva, R. (2023). Models for zero-inflated and overdispersed correlated count data: an application to cigarette use. Nicotine and Tobacco Research, 25(5), 996–1003. DOI: 10.1093/ntr/ntac253
Pooley, C.M. and Marion, G. (2018). Bayesian model evidence as a practical alternative to deviance information criterion. Royal Society Open Science, 5(3), 171519. DOI: 10.1098/rsos.171519
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(4), 583–639. DOI:  10.1111/1467-9868.00353
Tang, W., He, H. and Tu, X.M. (2023). Applied Categorical and Count Data Analysis. 2nd Edition. London, England: CRC Press.
Weiler, H. (1964). A significance test for simultaneous quanta1 and quantitative responses. Technometrics, 6(3), 273–285. DOI: 10.2307/1266044
Xia, Y., Sun, J., Chen, D.G., Xia, Y., Sun, J. and Chen, D.G. (2018). Modeling zero-inflated microbiome data. In. Y. Xia,  J. Sun, D. Chen, Y. Xia, J. Sun and D. Chen (eds.) Statistical analysis of microbiome data with R. Singapore: Springer, ICSA Book Series in Statistics. DOI: 10.1007/978-981-13-1534-3_12
Zeger, S.L. and Liang, K.Y. (1992). An overview of methods for the analysis of longitudinal data. Statistics in medicine, 11(14‐15), 1825–1839. DOI: 10.1002/sim.4780111406
Zhang, Q. and Yi, G.Y. (2023). Zero‐inflated Poisson models with measurement error in the response. Biometrics, 79(2), 1089–1102. DOI: 10.1111/biom.13657
Zorn, C.J. (1996). Evaluating zero-inflated and hurdle Poisson specifications. Midwest Political Science Association, 18(20), 1–16.