Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Optimizing Green Bean Yield: Controlled Nitrogen Release with Nano-Urea-Modified Apatite

(Muhammad A. Fathy , Mohamed I.D. Helal , Hassan A. Khater , Noha H. Abdelkader , Karima F. Abdelgawad )

Abstract

Controlled-release fertilizers (CRFs) have drawn significant attention because of their ability to improve plant nutrient uptake efficiency and mitigate environmental pollution. Current commercial CRFs need improvement to reduce synthesizing costs and to apply biodegradable materials and/or biorefinery wastes. In this study, CRFs were synthesized by treating nano-apatite with urea at different apatite:urea ratios (1:1 and 1:4). The biodegradable polymers, alginate, and lignin extracted from agricultural residue and paper manufacturing waste were used as single (alginate) and double (alginate and lignin) coating layers to form CRFs. In lab experiments, the N release behavior was studied in both water and soil. A cultivation experiment was carried out to study the efficiency of CRFs in the yield of green bean plants. The CRFs were applied with 3 N levels (75, 50, and 25% of the recommended dose). Both types of CRFs significantly increased the N release period to 24 days compared to 5 days for commercial urea. The total yield increased by 88 and 98% by applying double- and single-coated CRFs, respectively, at 75% N of the recommended dose compared with the full dose of conventional urea. In conclusion, applying CRFs at an N level of 25% of the recommended amount obtained the same yield as the full dose of conventional urea. 
KEYWORDS
biodegradable coating, hydroxyapatite, lignin, nano-fertilizer, nitrogen efficiency, snap beans

PDF

References

Abdelgawad, K.F., Awad, A.H., Ali, M.R., Ludlow, R.A., Chen, T. and El-Mogy, M.M. (2022). Increasing the storability of fresh-cut Green beans by using chitosan as a carrier for tea tree and peppermint essential oils and ascorbic acid. Plants, 11(6), 783. DOI: 10.3390/plants11060783 
AlSaeedi, A.H and Alameer, S.J (2023). The role of nanosilica in ameliorating the deleterious effect of salinity shock on cucumber growth. Scientific Journal of King Faisal University: Basic and Applied Sciences, 24(1), 21–9. DOI: 10.37575/b/agr/230026
Avila-Quezada, G.D., Ingle, A.P., Golińska, P. and Rai, M. (2022). Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnology Reviews, 11(1), 2123–40. DOI: 10.1515/ntrev-2022–0126
Azeem, B., KuShaari, K., Man, Z.B., Basit, A. and Thanh, T.H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181(1), 11–21. DOI: 10.1016/j.jconrel.2014.02.020 
Baardseth, P., Bjerke, F., Martinsen, B.K. and Skrede, G. (2010). Vitamin C, total phenolics and antioxidative activity in tip‐cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processed by methods used in catering. Journal of the Science of Food and Agriculture, 90(7), 1245–55. DOI: 10.1002/jsfa.3967
Beig, B., Niazi, M.B.K., Sher, F., Jahan, Z., Malik, U.S., Khan, M.D. and Vo, D.V.N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20(4), 2709–26. DOI: 10.1007/s10311-022-01409-w
Briassoulis, D. and Dejean, C. (2010). Critical review of norms and standards for biodegradable agricultural plastics part 1. Biodegradation in soil. Journal of Polymers and the Environment, 18(3), 384–400. DOI: 10.1007/s10924-010-0168-1
Carmona, F.J., Guagliardi, A. and Masciocchi, N. (2022). Nanosized calcium phosphates as novel macronutrient nano-fertilizers. Nanomaterials, 12(15), 2709. DOI: 10.3390/nano12152709
DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R. and Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91. DOI: 10.1038/nnano.2010.2
Dewis, J. and Freitas, F. (1970). Physical and chemical methods of soil and water analysis. FAO Soils Bulletin, n/a(10), 275.
Dhlamini, B., Paumo, H.K., Kamdem, B.P., Katata-Seru, L. and Bahadur, I. (2022). Nano-engineering metal-based fertilizers using biopolymers: An innovative strategy for a more sustainable agriculture. Journal of Environmental Chemical Engineering, 10(3), 107729. DOI: 10.1016/j.jece.2022.107729
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–6.

FAOSTAT (2021). Food and Agricultural Organization of the United Nations. Available at: https://www.fao.org/faostat/en/#data/QCL (accessed on 5/12/2023).
Fertahi, S., Bertrand, I., Ilsouk, M., Oukarroum, A., Zeroual, Y. and Barakat, A. (2020). New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. International Journal of Biological Macromolecules, 143(n/a), 153–62. DOI: 10.1016/j.ijbiomac.2019.12.005
Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A. and Santos, H.A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93(51), 233–69. DOI: 10.1016/j.pmatsci.2017.12.001
Gee, G.W. and Bauder, J.W. (1986). Particle-size Analysis. In A. Klute (ed.) Methods of Soil Analysis Part 1. United State: Soil Science Society of America Book Series.
George, E., Rolf, S. and John, R. (2013). Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region. 3rd edition. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA).
Huang, C., Ragauskas, A.J., Wu, X., Huang, Y., Zhou, X., He, J. and Yong, Q. (2018). Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresource Technology, 250(n/a), 365–73. DOI: 10.1016/j.biortech.2017.11.060
Kannan, S., Lemos, A.F. and Ferreira, J.M.F. (2006). Synthesis and mechanical performance of biological-like hydroxyapatites. Chemistry of Materials, 18(8), 2181–6. DOI: 10.1021/cm052567q
Kottegoda, N., Munaweera, I., Madusanka, N. and Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current science, 101(1), 73–8.
Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U.A., Berugoda Arachchige, D.M. and Amaratunga, G.A. (2017). Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11(2), 1214–21. DOI: 10.1021/acsnano.6b07781
Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B. and Yan, H. (2003). The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International, 29(6), 629–33. DOI: 10.1016/S0272-8842(02)00210-9
Liu, R. and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514(n/a), 131–9. DOI: 10.1016/j.scitotenv.2015.01.104
Madhurambal, G., Mariappan, M. and Mojumdar, S. (2010). Thermal, UV and FTIR spectral studies of urea–thiourea zinc chloride single crystal. Journal of Thermal Analysis and Calorimetry, 100(3), 763–8. DOI: 10.1007/s10973-010-0758-0
Maria, P.A., Juan, C.S., Florin, I., Jose, L.G., I.V., Ioan, V.A., Henn, K., Gálos, B. (2014). Climate Change and Restoration of Degraded Land. Madrid, Spain: Colegio de Ingenieros de Montes.
Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology, 69(6), 1376–81. DOI: 10.1104/pp.69.6.1376 
Okazaki, M., Hirata, I., Matsumoto, T. and Takahashi, J. (2005). Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR. Dental Materials Journal, 24(4), 508–14. DOI: 10.4012/dmj.24.508
Pourzahedi, L., Pandorf, M., Ravikumar, D., Zimmerman, J.B., Seager, T.P., Theis, T.L. and Lowry, G.V. (2018). Life cycle considerations of nano-enabled agrochemicals: are today's tools up to the task?. Environmental Science: Nano, 5(5), 1057–69. DOI: 10.1039/C7EN01166K
Sáez-Plaza, P., Michałowski, T., Navas, M.J., Asuero, A.G. and Wybraniec, S. (2013). An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Critical Reviews in Analytical Chemistry, 43(4), 178–223. DOI: 10.1080/10408347.2012.751786
Smoleń, S. and Sady, W. (2008). Effect of various nitrogen fertilisation and foliar nutrition regimes on carrot (Daucus carota L.) yield. The Journal of Horticultural Science and Biotechnology, 83(4), 427–34. DOI: 10.1080/14620316.2008.11512402
Stewart, A.J., Chapman, W., Jenkins, G.I., Graham, I., Martin, T. and Crozier, A. (2001). The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell and Environment, 24(11), 1189–97. DOI: 10.1046/j.1365-3040.2001.00768.x
Tarafder, C., Daizy, M., Alam, M.M., Ali, M.R., Islam, M.J., Islam, R. and Khan, M.Z.H. (2020). Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS omega, 5(37), 23960–6. DOI: 10.1021/acsomega.0c03233
Vernon, L.S., Rudolf, O. and Rosa, M.L. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299(n/a), 152–78. DOI: 10.1016/S0076-6879(99)99017-1
Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26–32. DOI: 10.1016/j.jmrt.2014.10.009
Xiao, X., Yu, L., Xie, F., Bao, X., Liu, H., Ji, Z. and Chen, L. (2017). One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chemical Engineering Journal, 309(n/a), 607–16. DOI: 10.1016/j.cej.2016.10.101
Ye, Y., Liang, X., Chen, Y., Liu, J., Gu, J., Guo, R. and Li, L. (2013). Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research, 144(n/a), 212–24. DOI: 10.1016/j.fcr.2012.12.003
Yousaf, M., Bashir, S., Raza, H., Shah, A.N., Iqbal, J., Arif, M. and Hu, C. (2021). Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi Journal of Biological Sciences, 28(5), 3021–30. DOI: 10.1016/j.sjbs.2021.02.043

Zhang, S., Fu, X., Tong, Z., Liu, G., Meng, S., Yang, Y. and Li, Y.C. (2020). Lignin–clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer. ACS Sustainable Chemistry and Engineering, 8(51), 18957–65. DOI: 10.1021/acssuschemeng.0c06472