Scientific Journal Of King Faisal University: Basic and Applied Sciences
Scientific Journal of King Faisal University: Basic and Applied Science
Comparative Genomic Analysis of Bacterial Strain PL and Detection of Sustainable Bio-Electricity Producing Features
(Guendouz Dif , Atika Meklat and Abdelghani Zitouni )Abstract
This study aimed to analyze the whole genome of the bacterial strain PL, isolated from pond sediment, to evaluate its genetic characteristics in the degradation of waste and toxic substrates and the generation of bioelectricity. This was compared to the type strain of the bacterial species Geobacter sulfurreducens (G. sulfurreducens) (PCA) and the strain KN400. Genomic taxonomy on the TYGS platform established the affiliation of strain PL with the bacterial species G. sulfurreducens. Subsequently, a genomic study of strains PL, PCA, and KN400 was performed using various bioinformatics tools. These included the study of genes associated with functional categories (COG) through genome annotation using the RAST server, followed by gene identification using the Prokka program to discover and identify genes related to electricity production. The results of the genomic analysis of the PL strain showed that it possesses many genes necessary for generating electric current. These included genes related to the formation of thick biofilms, adhesion to the anode of microbial fuel cells (MFCs), oxidation of various substrates and environmental pollutants, and extracellular electron transfer. Overall, the obtained results indicate that the PL strain is a promising candidate for sustainable bioenergy generation.
KEYWORDS
bioinformatics tools, genomic analysis, geobacter sulfurreducens, MFCs, sustainable bioenergy, whole genome
PDF
References
Agrahari, R., Bayar, B., Abubackar, H.N., Giri, B.S., Rene, E.R. and Rani, R. (2022). Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere, 290(n/a), 133184. DOI: 10.1016/j.chemosphere.2021.
Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1), 1–15. DOI: 10.1186/1471-2164 a – s
Bond, D.R. and Lovley, D.R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548–55. DOI: 10.1128/AEM.69.3.
Cai, T., Meng, L., Chen, G., Xi, Y., Jiang, N., Song, J., Shengyang, Z., Liu, Y., Zhen, G. and Huang, M. (2020). Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere, 248(n/a), 125985. DOI: 10.1016/j.chemosphere.2020.125985
Choudhury, P., Prasad Uday, U.S., Bandyopadhyay, T.K., Ray, R.N. and Bhunia, B. (2017). Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered, 8(5), 471–87. DOI: 10.1080/21655979.2016.1267883
Dif, G. and Zitouni, A. (2023). Revealing of potential plant growth-enhancing traits through in silico genomic analysis of Bacillus rhizoplanae CIP111899. The Scientific Journal of King Faisal University: Basic and Applied Sciences, 24(1), 34–40. DOI: 10.37575/b/sci/230003
Guadarrama-Pérez, O., Guevara-Pérez, A.C., Guadarrama-Pérez, V.H., Bustos-Terrones, V., Hernández-Romano, J., Guillén-Garcés, R.A. and Moeller-Chávez, G.E. (2023). Bioelectricity production from the anodic inoculation of Geobacter sulfurreducens DL-1 bacteria in constructed wetlands-microbial fuel cells. Bioelectrochemistry, n/a(n/a), 108537. DOI: 10.1016/j.bioelechem.2023.108537
Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura, J., Ohira, T., Tominaga, T., Akashi, M., Hirohashi, N., Ishikawa, T., Kamiya, K., Shibuya, K., Yamashita, S. and Chhem, R.K. (2015). Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima. The Lancet, 386(9992), 479–88. DOI: 10.1016/S0140-6736(15)61106-0
Hassan, R.Y., Febbraio, F. and Andreescu, S. (2021). Microbial electrochemical systems: Principles, construction and biosensing applications. Sensors, 21(4), 1279. DOI: 10.3390/s21041279
Hernández-Macedo, M.L., López, J.A., Eguiluz, K.I.B. and Salazar-Banda, G.R. (2020). Environmental Biotechnology: Challenges and perspectives in applying combined technologies to enhance remediation and renewable energy generation. Revista Peruana de Biología, 27(1), 43–8. DOI: 10.15381/rpb.v27i1.17578
Hunt, N.D., Liebman, M., Thakrar, S.K. and Hill, J.D. (2020). Fossil energy use, climate change impacts, and air quality-related human health damages of conventional and diversified cropping systems in Iowa, USA. Environmental Science & Technology, 54(18), 11002–14. DOI: 10.1021/acs.est.9b06929
Ihara, S., Wakai, S., Maehara, T. and Okamoto, A. (2022). Electrochemical enrichment and isolation of electrogenic bacteria from 0.22 µm filtrate. Microorganisms, 10(10), 2051. DOI: 10.3390/microorganisms10102051
Jatoi, A.S., Akhter, F., Mazari, S.A., Sabzoi, N., Aziz, S., Soomro, S.A., Mubarak, N.M., Baloch, H., Memon, A.Q. and Ahmed, S. (2021). Advanced microbial fuel cell for wastewater treatment—a review. Environmental Science and Pollution Research, 28(n/a), 5005–19. DOI: 10.1007/s11356-020-11691-2
Kabeyi, M.J.B. and Olanrewaju, O.A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy Research, 9(n/a), 1032. Doi:10.3389/fenrg.2021.743114
Kartal, M.T. (2022). The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renewable Energy, 184(n/a), 871–80. DOI: 10.1016/j.renene.2021.12.022
Kumar, R., Singh, L. and Wahid, Z.A. (2015). Role of microorganisms in microbial fuel cells for bioelectricity production. Microbial Factories: Biofuels, Waste Treatment, 1(n/a), 135–54. DOI: 10.1007/978-81-322-2598-0_9
Kumar, R., Singh, L. and Zularisam, A.W. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56(n/a), 1322–36. DOI: 10.1016/j.rser.2015.12.029
Liu, Y., Fredrickson, J.K., Zachara, J.M. and Shi, L. (2015). Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe (III) by Geobacter sulfurreducens PCA. Frontiers in Microbiology, 6(n/a), 1075. Doi:10.3389/fmicb.2015.01075
Mahadevan, R., Bond, D.R., Butler, J.E., Esteve-Nunez, A., Coppi, M.V., Palsson, B.O., Schilling, C.H. and Lovley, D.R. (2006). Characterization of metabolism in the Fe (III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology, 72(2), 1558–68. Doi:10.1128/AEM.72.2.1558-1568.2006
Mehta, T., Coppi, M.V., Childers, S.E. and Lovley, D. (2005). Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology, 71(12), 8634–41. Doi:10.1128/AEM.71.12.8634-8641.2005
Meier-Kolthoff, J.P. and Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), 2182.
Nagarajan, H., Butler, J.E., Klimes, A., Qiu, Y., Zengler, K., Ward, J., Young, N.D., Methé, B.A., Palsson, B., Lovley, D.R. and Barrett, C.L. (2010). De novo assembly of the complete genome of an enhanced electricity-producing variant of Geobacter sulfurreducens using only short reads. PloS One, 5(6), e10922. Doi:10.1371/journal.pone.0010922
Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T., Fookes, M., Falush, D., Keane, J.A. and Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3. Doi:10.1093/bioinformatics/btv421
Perera, F. and Nadeau, K. (2022). Climate change, fossil-fuel pollution, and children’s health. New England Journal of Medicine, 386(24), 2303–14. Doi:10.1056/NEJMra2117706
Reguera, G., Pollina, R.B., Nicoll, J.S. and Lovley, D.R. (2007). Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. Journal of Bacteriology, 189(5), 2125–7. Doi:10.1128/JB.01284-06
Qian, X., Mester, T., Morgado, L., Arakawa, T., Sharma, M.L., Inoue, K., Joseph, C., Carlos A.S., Maroney, M.J. and Lovley, D.R. (2011). Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe (III) reduction in Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(4), 404–12. Doi:10.1016/j.bbabio.2011.01.003
Qing, L., Alwahed Dagestani, A., Shinwari, R. and Chun, D. (2023). Novel research methods to evaluate renewable energy and energy-related greenhouse gases: Evidence from BRICS economies. Economic Research-Ekonomska Istraživanja, 36(1), 960–76. Doi:10.1080/1331677X.2022.2080746
Ray, M., Kumar, V. and Banerjee, C. (2020). Strategies for optimization of microbial community structure in microbial fuel cell for advanced industrial wastewater treatment. Recent Developments in Bioenergy Research, n/a(n/a), 299–310. DOI: 10.1016/B978-0-12-819597-0.00015-5
Rosenberg, N. (1998). The role of electricity in industrial development. The Energy Journal, 19(2), n/a. DOI: 10.5547/ISSN0195-6574-EJ-Vol19-No2-2
Sarma, R., Tamuly, A. and Kakati, B.K. (2022). Recent developments in electricity generation by Microbial Fuel Cell using different substrates. Materials Today: Proceedings, 49(2), 457–63. DOI: 10.1016/j.matpr.2021.02.522
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–9. DOI: 10.1093/bioinformatics/btu153
Sharma, S., Basu, S., Shetti, N.P. and Aminabhavi, T.M. (2020). Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Science of the Total Environment, 713(n/a), 136633. DOI: 10.1016/j.scitotenv.2020.136633
Torlaema, T.A.M., Ibrahim, M.N.M., Ahmad, A., Guerrero-Barajas, C., Alshammari, M.B., Oh, S.E. and Hussain, F. (2022). Degradation of hydroquinone coupled with energy generation through microbial fuel cells energized by organic waste. Processes, 10(10), 2099. DOI: 10.3390/pr10102099
Wang, H., Luo, H., Fallgren, P.H., Jin, S. and Ren, Z.J. (2015). Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnology Advances, 33(3–4), 317–34. DOI: 10.1016/j.biotechadv.2015.04.003