Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

A Three-Term Conjugate Gradient Method for Non-Convex Functions with Applications for Heat Transfer

(Umar Audu Omesa, Ibrahim Mohammed Sulaiman, Maulana Malik, Basim A. Hassan, Waziri Muhammad Yusuf, and Mustafa Mamat)

Abstract

The problem of unconstrained optimization (UOP) has recently gained a great deal of attention from researchers around the globe due to its numerous real-life applications. The conjugate gradient (CG) method is among the most widely used algorithms for solving UOP because of its good convergence properties and low memory requirements. This study investigates the performance of a modified CG coefficient for optimization functions, proof of sufficient descent, and global convergence of the new CG method under suitable, standard Wolfe conditions. Computational results on several benchmark problems are presented to validate the robustness and efficacy of the new algorithm. The proposed method was also applied to solve function estimations in inverse heat transfer problems. Another interesting feature possessed by the proposed modification is the ability to solve problems on a large scale and use different dimensions. Based on the theoretical and computational efficiency of the new method, we can conclude that the new coefficient can be a better alternative for solving unconstrained optimization and real-life application problems.
KEYWORDS
Computational efficiency, global convergence, inverse heat, low memory, optimization problems, theoretical efficiency
PDF

References

Andrei, N. (2008). An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 10(1), 147–61. 
Audu, O.U., Mamat, M., Sulaiman, I.M., Waziri, M.Y. and Abba, V.M. (2020). A new modification of conjugate gradient parameter with efficient line search for nonconvex function. International Journal of scientific and Technology Research, 9(3), 1–4. 
Awwal, A.M., Sulaiman, I.M., Malik, M., Mamat, M., Kumam, P. and Sitthithakerngkiet, K. (2021). A spectral RMIL+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access, 9(n/a) 75398–414.
Beale, E.M.L. (1972). A derivation of conjugate gradients. In: F.A. Lootsma (Ed.), Numerical Methods for Nonlinear Optimization. London: Academic Press.
Colaco, M.J. and Orlande, H.R. (1999). Comparison of different versions of the conjugate gradient method of function estimation. Numerical Heat Transfer: Part A: Applications, 36(2), 229–49.
Dai, H.Y. and Liao, Z.L. (2001). New conjugacy conditions and related nonlinear conjugate gradient methods. Applied Mathematics and optimization, 43(1), 87–101.
Dai, Y.H. and Yuan, Y. (2000). Nonlinear Conjugate Gradient Methods. Shanghai: Shanghai Science and Technology Publisher.
Deng, S. and Wan, Z. (2015). A three-term conjugate gradient algorithm for large-scale unconstrained optimization problems. Applied Numerical Mathematics, 92(n/a), 70–81.
Dolan, E.D. and Moré, J.J. (2002). Benchmarking optimization software with performance profiles. Mathematical programming, 91(2), 201–13.
Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2), 149–54.
Gilbert, J.C. and Nocedal, J. (1992). Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on optimization, 2(1), 21–42.
Grippo, L. and Lucidi, S. (1997). A globally convergent version of the Polak-Ribiere conjugate gradient method. Mathematical Programming, 78(3), 375–91.
Hager, W.W. and Zhang, H. (2006). A survey of nonlinear conjugate gradient methods. Pacific journal of Optimization, 2(1), 35–58.
Hestenes, M.R. and Stiefel, E. (1952). Methods of conjugate gradients for solving. Journal of Research of the National Bureau of Standards, 49(6), 409.
Jarny, Y., Ozisik, M.N. and Bardon, J.P. (1991). A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. International journal of heat and mass transfer, 34(11), 2911–9.
Kamfa, K., Waziri, M.Y., Sulaiman, I.M., Ibrahim, M.A.H., Mamat, M. and Abas, S.S. (2020). An efficient hybrid bfgs-cg search direction for solving unconstrained optimization problems. Journal of Advanced Research in Dynamical and Control Systems, 12(2), 1035–41.
Lally, B., Biegler, L. and Henein, H. (1990). Finite difference heat-transfer modeling for continuous casting. Metallurgical Transactions B, 21(4), 761–70.
Liu, J. and Du, S. (2019). Modified Three-Term Conjugate Gradient Method and Its Applications. Available at: https://www.hindawi.com/journals/mpe/2019/5976595/ (accessed on 10/09/2022).
Malik, M., Abubakar, A.B., Ibrahim, S.M., Mamat, M., Abas, S.S. and Firman, S. (2021). A new three-term conjugate gradient method for unconstrained optimization with applications in portfolio selection and robotic motion control. IAENG International Journal of Applied Mathematics, 51(2021), 471–86.
Malik, M., Mamat, M., Abas, S.S., Ibrahim, S.M. and Sukono, F. (2020). A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization. Journal of Mathematical and Computational Science, 10(5), 2053–69.
Mamat, M., Sulaiman, I.M., Malik, M. and Zakaria, Z.A. (2020). An efficient spectral conjugate gradient parameter with descent condition for un-constrained optimization. Journal of Advanced Research in Dynamical and Control Systems, 12(2), 2487–93.
Maulana, M., Sulaiman, I.M., Auwal, B.A., Gianinna, A. and Sukono. (2023). A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection. AIMS Mathematics, 8(1), 1–28. 
McGuire, M.F. and Wolfe, P. (1973). Evaluating a Restart Procedure for Conjugate Gradients. Available at: https://dominoweb.draco.res.ibm.com/reports/rc4382.pdf (accessed on 10/09/2022).
Omesa, U.A., Sulaiman, I.M., Yusuf, W.M., Hassan, B.A., Moyi, A.U., Abdul-Rahman, A. and Mamat, M. (2023). An efficient hybrid Conjugate gradient algorithm for solving intuitionistic fuzzy nonlinear equations. The Scientific Journal of King Faisal University: Basic and Applied Sciences, 24(1), 8–13. DOI: 10.37575/b/sci/220041 
Orlande, H.R., Colaço, M.J. and Malta, A.A. (1997). Estimation of the heat transfer coefficient in the spray cooling of continuously cast slabs. Asme-Publications-Htd, United States, 340(n/a), 109–16.
Polak, E. and Ribiere, G. (1969). Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3(1), 35–43.
Powell, M.J. (1984). Nonconvex minimization calculations and the conjugate gradient method. In: D.F. Griffiths (eds.), Numerical Analysis. Berlin: Springer.
Razzaq, A., Seadawy, R. and Raza, N. (2020). Heat transfer analysis of viscoelastic fluid flow with fractional Maxwell model in the cylindrical geometry. Physica Scripta, 95(11), 115220.
Stewart, I., Massingham, J.D. and Hagers, J.J. (1996). Heat transfer coefficient effects on spray cooling. Iron and Steel Engineer, 73(7), n/a.
Sulaiman, I.M. and Mamat, M. (2020). A new conjugate gradient method with descent properties and its application to regression analysis. Journal of Numerical Analysis, Industrial and Applied Mathematics, 12(1-2), 25–39. 
Sulaiman, I.M., Awwal, A.M., Malik, M., Pakkaranang, N. and Panyanak, B. (2022c). A derivative-free MZPRP projection method for convex constrained nonlinear equations and its application in compressive sensing. Mathematics, 10(16), 2884.
Sulaiman, I.M., Malik, M., Awwal, A.M., Kumam, P., Mamat, M. and Al-Ahmad, S. (2022a). On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control. Advances in Continuous and Discrete Models, 2022(1), 1. DOI:10.1186/s13662-021-03638-9
Sulaiman, I.M., Malik, M., Giyarti, W., Mamat, M., Ibrahim M.A.H. and Ahmad, M.Z. (2022b). The application of conjugate gradient method to motion control of robotic manipulators. In: I.M. Khairuddin, M.A. Abdullah, A.F. Ab-Nasir, J.A.M. Jizat, M.A.M. Razman, A.S. Abdul Ghani, M.A. Zakaria, W.H.M. Isa and A.P.P. Abdul Majeed (eds.) Enabling Industry 4.0 Through Advances in Mechatronics. Singapore: Springer.
Sulaiman, I.M., Mamat, M., Owoyemi, A.E., Ghazali, P.L., Rivaie, M. and Malik, M. (2021b). The convergence properties of some descent conjugate gradient algorithms for optimization models. Journal of Mathematics and Computer Science, 22(3), 204–15.
Sulaiman, I.M., Mamat, M., Waziri, M.Y., Yakubu, U.A. and Malik, M. (2021a). The performance analysis of a new modification of conjugate gradient parameter for unconstrained optimization models. Mathematics and Statistics, 9(1), 16–23. DOI:10.13189/ms.2021.090103
Umar, A.O., Sulaiman, I.M., Mamat, M., Waziri, M.Y., Foziah, H.M., Altien, J.R. and Deiby, T.S. (2020). New Hybrid conjugate gradient method for solving fuzzy nonlinear equations. Journal of Advanced Research in Dynamical and Control Systems, 12(2), 585–90.
Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM review, 11(2), 226–35.
Yakubu, U.A., Sulaiman, I.M., Mamat, M., Ghazali, P. and Khalid, K. (2020). The global convergence properties of a descent conjugate gradient method. Journal of Advanced Research in Dynamical and Control Systems, 12(2), 1011–6.
Zhang, L., Zhou, W. and Li, D. (2007). Some descent three-term conjugate gradient methods and their global convergence. Optimization Methods and Software, 22(4), 697–711.
Zoutendijk, G. (1970). Nonlinear Programming, Computational methods. In: J. Abadie (Ed.) Integer and Nonlinear Programming. Amsterdam: North-Holland.