Scientific Journal Of King Faisal University
Basic and Applied Sciences

ع

Scientific Journal of King Faisal University / Basic and Applied Sciences

Design and Establishment of an Implementation to Simulate and Analyse the Tertiary Undulator of the FEL

(Thair Abdulkareem Khalil Al-Aish and Hanady Amjed Kamil)

Abstract

This paper discusses how the power of the free electron laser (FEL) beam was increased without increasing the size of the laser device by using a new model with a different technique for the undulator; the purpose of this technique is to make full use of the undulator magnets in a three-row system instead of the two-magnet system. This technique reduces the size of the laser device by decreasing the undulator’s length and controlling the path of electrons within the rows of the undulator magnets. From the analysis of the obtained simulation results, it can be concluded that it is possible to make the FEL device with double the power output without increasing the size of the device; this will increase future applications of the FEL in the civil and military fields.
KEYWORDS
Laser, coherent photons, wavelength, output power, magnets, SASE
PDF

References

Al-Aish, T.A. and Jawad, R.L. (2017). Design and simulate a new defense system of free electron laser DSFEL. Engineering and Technology Journal, 35(2B), 166–72.  
Al-Aish, T.A.K. (2017). Analysis and study of the effect of atmospheric turbulence on laser weapon in Iraq. Baghdad Science Journal, 14(2), 426–37. DOI: 10.21123/bsj.2017.14.2.0427.
Al-Aish, T.A.K. and Kamil, H.A. (2022). Simulation and analysis the effect of the Lorentz force in a free electron laser. Ibn AL-Haitham Journal for Pure and Applied Sciences, 35(2), 7–16. DOI:10.30526/35.2.2775.
Al-Aish, T.A.K., Jawad, R.L. and Kamil, H.A. (2019). Design and simulation a high-energy free electron laser HEFEL. In: AIP Conference Proceedings, AIP Publishing LLC, Beirut, Lebanon, 10-12/04/2019. DOI: 10.1063/1.5116995.
Ali, M.A., Al-Aish, T.A.K. and Kamil, H.A. (a2022). Analyzing and simulating the mechanism of laser medical therapy. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28-30/05/2021. DOI: 10.1063/5.0092605.
Ali, M.A., Al-Aish, T.A.K. and Kamil, H.A. (b2022). A simulation breakdown the blood clot using a free electron laser system. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28-30/05/2021. DOI: 10.1063/5.0092607.
Bergman, U., Yachandra, V.K. and Yano, J. (2017). X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology, Cambridge, UK: Royal Society of Chemistry.
Colson, W.B. (1976). Theory of a free electron laser. Physics Letters A, 59(3), 187–90. DOI: 10.1016/0375-9601(76)90561-2.
Dhedan, Z.A., Al-Aish, T.A.K. and Kamil, H.A. (2022). Design and simulation of a new system for producing laser beams without resonator “NSPLBR”. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28-30/05/2021. DOI: 10.1063/5.0092603.
Feng, C. and Deng, H.X. (2018). Review of fully coherent free-electron lasers. Nuclear Science and Techniques, 29(11), 1–15. DOI: 10.1007/s41365-018-0490-1.
Hannon, F.E. (2008). A High Average-Current Electron Source for the Jefferson Laboratory Free Electron Laser. PhD Thesis, Lancaster University, Lancaster, United Kingdom.
Kamil, H.A. and Al-Aish, T.A.K. (2022). Determine the hazard level and biological effects for visible laser pointers. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28-30/05/2021. DOI: 10.1063/5.0092595.
Kamil, H.A., Ahmed, M.S. and Al-Aish, T.A.K. (2019). Rain formation by free electron laser pulse system FELPS. In: AIP Conference Proceedings, AIP Publishing LLC, Beirut, Lebanon, 10-12/04/2019. DOI: 10.1063/1.5138570.
Madey, J.M. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied   Physics, 42(5), 1906–13. DOI:10.1063/1.1660466.
Mahmood, H.K. and Al-Aish, T.A.K. (2022). Design and stimulated the detectors of high-power lasers DHPL. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28-30/05/2021. DOI: 10.1063/5.0092603.
Mansfield, R.P. (2005). High Energy Solid State and Free Electron Laser Systems in Tactical Aviation. PhD Thesis, Naval Postgraduate School, California, USA.
Pflueger, J. (2018). Undulator technology. In: Proceedings of the CAS–CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, CERN Yellow Reports: School Proceedings, Hamburg, Germany, 31–10/06/2018. DOI: 10.23730/CYRSP-2018-001.55.
Romaniuk, R.S. (2009). POLFEL-free electron laser in Poland. Photonics Letters of Poland, 1(3), 103–5.
Steiniger, K., Debus, A., Irman, A., Jochmann, A., Pausch, R., Schramm, U. and Bussmann, M. (2014). All-optical free-electron lasers using Traveling-Wave Thomson-Scattering. In: 5th  International Particle Accelerator Conference, IPAC2014, Dresden, Germany, 15–20/07/2014. DOI: 10.18429/JACoW-IPAC2014-WEPRO053.
Varro, S. (2012). Free Electron Lasers. Rijeka, Croatia: BoD–Books on Demand.
Zhang, T., Wang, G.L., Yao, H.F., Wang, D., Wang, W.T., Wang, C. and Wang, S.H. (2013). Numerical investigations of transverse gradient undulator based novel light sources. In: Proceedings of the 35th International Free-Electron Laser Conference, New York, USA, 26–30/08/2013.