Scientific Journal Of King Faisal University
Basic and Applied Sciences

ع

Scientific Journal of King Faisal University / Basic and Applied Sciences

Ultra-Short Pulses Generation of Free Electron Laser

(Thair Abdulkareem Khalil Al-Aish and Hanady Amjed Kamil)

Abstract

The major problem facing the development of civil and military laser applications lies in the attempts to obtain short pulses close to the length of the bond that connects the atoms of certain materials. In this paper, an executable program has been constructed to simulate and analyze the generation of ultra-short free electron laser pulses; it contains several parameters directing the creation of short pulses within a time duration of femtoseconds (fs). On analyzing the simulation results, it can be concluded that it is possible to generate ultra-short pulses with a duration of about 7.4 – 87.4 fs with the storage ring free-electron laser Fabry–Perot resonator with noticeably short wavelengths (11.4–190.2) for the output laser beam.
KEYWORDS
Homogenous broadening; SR-FEL; undulator; energy spread gain; Q- switching

PDF

References

Al-Aish, T.A. and Jawad, R.L. (2017). Design and simulate a new defense system of free electron laser DSFEL. Engineering and Technology Journal, 35(2B), 166–72. 
Al-Aish, T.A.K. (2017). Analysis and study of the effect of atmospheric turbulence on laser weapon in Iraq. Baghdad Science Journal, 14(2), 426–37. DOI: 10.21123/bsj.2017.14.2.0427.
Al-Aish, T.A.K. and Kamil, H.A. (2022). Simulation and analysis the effect of the Lorentz force in a free electron laser. Ibn AL-Haitham Journal for Pure and Applied Sciences, 35(2), 7–16. DOI:10.30526/35.2.2775.
Al-Aish, T.A.K., Jawad, R.L. and Kamil, H.A. (2019). Design and simulation a high-energy free electron laser HEFEL. In: AIP Conference Proceedings, AIP Publishing LLC, Beirut, Lebanon, 10–12/04/2019. DOI: 10.1063/1.5116995.
Ali, M.A., Al-Aish, T.A.K. and Kamil, H.A. (a2022). Analyzing and simulating the mechanism of laser medical therapy. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28–30/05/2021. DOI: 10.1063/5.0092605.
Ali, M.A., Al-Aish, T.A.K. and Kamil, H.A. (b2022). A simulation breakdown the blood clot using a free electron laser system. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28–30/05/2021. DOI: 10.1063/5.0092607.
Benson, S.V., Douglas, D., Neil, G.R. and Shinn, M.D. (2011). The Jefferson Lab free electron laser program. In: Journal of Physics: Conference Series, IOP Publishing. Virginia, USA, 8–11/06/2011. DOI 10.1088/1742-6596/299/1/012014.
Dattoli, G., Renieri, A. and Torre, A. (1993). Lectures on the Free Electron Laser Theory and Related Topics. London, UK: World Scientific.
Davis, C.C. (1996). Lasers and electro-optics: Fundamentals and Engineering. New York, USA: Cambridge University Press.
Dhedan, Z.A., Al-Aish, T.A.K. and Kamil, H.A. (2022). Design and simulation of a new system for producing laser beams without resonator “NSPLBR”. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28–30/05/2021. DOI: 10.1063/5.0092603.
Haarlammert, T. and Zacharias, H. (2009). Application of high harmonic radiation in surface science. Current Opinion in Solid State and Materials Science, 13(1-2), 13–27.
Hannon, F.E. (2008). A High Average-Current Electron Source for the Jefferson Laboratory Free Electron Laser. PhD Thesis, Lancaster University, Lancaster, United Kingdom.
Kamil, H.A. and Al-Aish, T.A.K. (2022). Determine the hazard level and biological effects for visible laser pointers. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28–30/05/2021. DOI: 10.1063/5.0092595.
Kamil, H.A., Ahmed, M.S. and Al-Aish, T.A.K. (2019). Rain formation by free electron laser pulse system FELPS. In: AIP Conference Proceedings, AIP Publishing LLC, Beirut, Lebanon, 10–12/04/2019. DOI: 10.1063/1.5138570.
Kawamura, Y., Toyoda, K. and Kawai, M. (1987). Observation of periodical short pulse trains in free‐electron laser oscillations. Applied Physics Letters, 51(11), 795–7.
Kryukov, P. and Letokhov, V. (1972). Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber. IEEE Journal of Quantum Electronics, 8(10), 766–82.
Mahmood, H.K. and Al-Aish, T.A.K. (2020). Design and stimulated the detectors of high-power lasers DHPL. In: AIP Conference Proceedings, AIP Publishing LLC, Athens, Greece, 28–30/05/2021. DOI: 10.1063/5.0092603.
Mehravaran, H., Parvin, P. and Dorranian, D. (2010). Changeover in the molecular and atomic fluorine laser transitions. Applied optics, 49(15), 2741–8.
Moulton, P.F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3. JOSA B, 3(1), 125–33.
Parvin, P., Mortazavi, S.Z. and Korabaslo, M.N. (2012). Possibility for mode-locked operation of a femtosecond UV storage ring free-electron laser using a low-loss Fabry–Perot resonator. Optics and Laser Technology, 44(7), 2161–7.
Parvin, P., Zaeferani, M.S., Mirabbaszadeh, K. and Sadighi, R. (1997). Measurement of the small-signal gain and saturation intensity of a XeF discharge laser. Applied optics, 36(6), 1139–42.
Penzkofer, A. (1988). Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses. Applied physics B, 46(1), 43–60.
Varro, S. (2012). Free Electron Lasers. Rijeka, Croatia: BoD–Books on Demand.
Wieduwilt, T., Dellith, J., Talkenberg, F., Bartelt, H. and Schmidt, M.A. (2014). Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator. Optics express, 22(21), 25333–46.
Zegadi, R., Lorrain, N., Meziani, S., Dumeige, Y., Bodiou, L., Guendouz, M. and Charrier, J. (2022). Theoretical demonstration of the interest of using porous germanium to fabricate multilayer vertical optical structures for the detection of SF6 gas in the mid-infrared. Sensors, 22(3), 844.