Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Identifying Novel Targetable Chromosomal Alterations in Ovarian Cancer: Using Germline Copy Number Variation Association Analysis

(Hanan Mohamed Abd Elmoneim, Rehab Kamal Mohammed, Reda Fikry Abd El-Meguid, Heba Mohammed Tawfik, Manal Ismail Abd Elghany, Halah Tariq Albar, Mohammed Abubakr Mohammed Basalamah and Nisreen Dahi Mohamed Toni)

Abstract

The heterogeneity of ovarian cancer (Ov Ca) is attributed to multiple genetic and epigenetic changes, rendering it difficult to detect the most relevant molecular alterations. Identifying copy number variations (CNVs) will be helpful in screening patients with a familial history and will ultimately facilitate early diagnosis. This work aims to determine germline CNVs that may be associated with risks for different subtypes of ovarian cancer. Using Affymetrix genome-wide human SNP 6.0 arrays, 138 germline DNA samples of non-familial ovarian cancer were analysed using Golden Helix (SVS7) software. CNVs overlapping the EYA2 (20q13.12) and WNK1 (12p13.33) genes are the top hits with a significant p-value (<0.05). Deletion is more frequent in normal and low-grade carcinomas. Commonly, ovarian cancer is copy neutral (CN2) or has copy number gains (CN3). Amplification at these locations is associated with high-grade cases, which have worse overall survival rates. A CN3 in the WNK1 gene is associated with a higher expression of mRNA. It could be concluded that ovarian cancer is associated with CN3s where the segments of DNA overlap WNK1 and EYA2. The oncogenic effect of WNK1 and EYA2 on ovaries may serve as prognostic markers for ovarian cancer.
PDF

References

Alexandrova, E., Pecoraro, G., Sellitto, A., Melone, V., Ferravante, C., Rocco, T., Guacci, A., Giurato, G., Nassa, G., Rizzo, F., Weisz, A. and Tarallo, R. (2020). An overview of candidate therapeutic target genes in ovarian cancer. Cancers (Basel), 12(6), 1470.
Blevins, M.A., Towers, C.G., Patrick, A.N., Zhao, R. and Ford, H.L. (2015). The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets, 19(2), 213–25. 
Bowtell, D.D. (2010). The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer, 10(11), 803–8.
Cheng, C.J. and Huang, C.L. (2011). Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1. J Am Soc Nephrol, 22(3), 460–71.
Concolino, P., Rizza, R., Mignone, F., Costella, A., Guarino, D., Carboni, I., Capoluongo, E., Santonocito, C., Urbani, A. and Minucci, A. (2018). A comprehensive BRCA1/2 NGS pipeline for an immediate Copy Number Variation (CNV) detection in breast and ovarian cancer molecular diagnosis. Clin Chim Acta, 480(n/a), 173–9.
Costa, A.M., Pinto, F., Martinho, O., Oliveira, M.J., Jordan, P. and Reis, R.M. (2015). Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget, 6(3), 1422–34.
George, J., Alsop, K., Etemadmoghadam, D., Hondow, H., Mikeska, T., Dobrovic, A., deFazio, A., Australian Ovarian Cancer Study, G., Smyth, G.K., Levine, D.A., Mitchell, G. and Bowtell, D.D. (2013). Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin Cancer Res, 19(13), 3474–84.
Huang, C.-L., Jian, X. and Yuh, C.-H. (2020). WNK1-OSR1/SPAK Kinase cascade is important for angiogensis. Transactions of the American Clinical and Climatological Association, 131(n/a), 140–6.
Kobel, M., Kalloger, S.E., Boyd, N., McKinney, S., Mehl, E., Palmer, C., Leung, S., Bowen, N.J., Ionescu, D.N., Rajput, A., Prentice, L.M., Miller, D., Santos, J., Swenerton, K., Gilks, C.B. and Huntsman, D. (2008). Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med, 5(12), e232.
Kohrt, D., Crary, J., Zimmer, M., Patrick, A.N., Ford, H.L., Hinds, P.W. and Grossel, M.J. (2014). CDK6 binds and promotes the degradation of the EYA2 protein. Cell Cycle, 13(1), 62–71.
Kori, M. and Yalcin Arga, K. (2018). Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective. PLoS One, 13(7), e0200717.
Kossai, M., Leary, A., Scoazec, J.Y. and Genestie, C. (2018). Ovarian Cancer: A Heterogeneous Disease. Pathobiology, 85(1-2), 41–9.
Lawrenson, K., Song, F., Hazelett, D.J., Kar, S.P., Tyrer, J., Phelan, C.M., Corona, R.I., Rodriguez-Malave, N.I., Seo, J.H., Adler, E., Coetzee, S.G., Segato, F., Fonseca, M.A.S., Amos, C.I., Carney, M.E., Chenevix-Trench, G., Choi, J., Doherty, J.A., Jia, W., Jin, G.J., Kim, B.G., Le, N.D., Lee, J., Li, L., Lim, B.K., Adenan, N.A., Mizuno, M., Park, B., Pearce, C.L., Shan, K., Shi, Y., Shu, X.O., Sieh, W., Australian Ovarian Cancer Study, G., Thompson, P.J., Wilkens, L.R., Wei, Q., Woo, Y.L., Yan, L., Karlan, B.Y., Freedman, M.L., Noushmehr, H., Goode, E.L., Berchuck, A., Sellers, T.A., Teo, S.H., Zheng, W., Matsuo, K., Park, S., Chen, K., Pharoah, P.D.P., Gayther, S.A. and Goodman, M.T. (2019). Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in East Asian women. Gynecol Oncol, 153(2), 343–55.
Lee, B.H., Chen, W., Stippec, S. and Cobb, M.H. (2007). Biological cross-talk between WNK1 and the transforming growth factor beta-Smad signaling pathway. J Biol Chem, 282(25), 17985–96.
Lee, C., Iafrate, A.J. and Brothman, A.R. (2007). Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet, 39(7 Suppl), S48–54.
Li, C., Lin, C., Cong, X. and Jiang, Y. (2018). PDK1-WNK1 signaling is affected by HBx and involved in the viability and metastasis of hepatic cells. Oncol Lett, 15(4), 5940–6.
Li, X., Liu, Y., Lu, J. and Zhao, M. (2017). Integrative analysis to identify oncogenic gene expression changes associated with copy number variations of enhancer in ovarian cancer. Oncotarget, 8(53), 91558–67.
Liu, Z., Zhao, L. and Song, Y. (2019). Eya2 Is overexpressed in human prostate cancer and regulates docetaxel sensitivity and mitochondrial membrane potential through AKT/Bcl-2 signaling. Biomed Res Int, 2019(n/a), 3808432.
Moniz, S. and Jordan, P. (2010). Emerging roles for WNK kinases in cancer. Cell Mol Life Sci, 67(8), 1265–76.
Rodan, A.R. and Jenny, A. (2017). WNK Kinases in Development and Disease. Curr Top Dev Biol, 123(n/a), 1–47.
Sie, Z.L., Li, R.Y., Sampurna, B.P., Hsu, P.J., Liu, S.C., Wang, H.D., Huang, C.L. and Yuh, C.H. (2020). WNK1 Kinase Stimulates Angiogenesis to Promote Tumor Growth and Metastasis. Cancers (Basel), 12(3), 575.
Siegel, R.L., Miller, K.D. and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J. Clin, 69(1), 7–34.
Silver, S.J., Davies, E.L., Doyon, L. and Rebay, I. (2003). Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol, 23(17), 5989–99.
Sousounis, K., Bryant, D.M., Martinez Fernandez, J., Eddy, S.S., Tsai, S.L., Gundberg, G.C., Han, J., Courtemanche, K., Levin, M. and Whited, J. L. (2020). Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. eLife, 9(n/a), e51217.
Sun, X., Gao, L., Yu, R.K. and Zeng, G. (2006). Down-regulation of WNK1 protein kinase in neural progenitor cells suppresses cell proliferation and migration. J. Neurochem, 99(4), 1114–21.
Tadjuidje, E. and Hegde, R.S. (2013). The Eyes Absent proteins in development and disease. Cell Mol Life Sci, 70(11), 1897–913.
Tootle, T.L., Silver, S.J., Davies, E.L., Newman, V., Latek, R.R., Mills, I.A., Selengut, J.D., Parlikar, B.E. and Rebay, I. (2003). The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature, 426(6964), 299–302.
Vincent, A., Hong, S.M., Hu, C., Omura, N., Young, A., Kim, H., Yu, J., Knight, S., Ayars, M., Griffith, M., Van Seuningen, I., Maitra, A. and Goggins, M. (2014). Epigenetic silencing of EYA2 in pancreatic adenocarcinomas promotes tumor growth. Oncotarget 5(9), 2575–87.
Walker, L.C., Marquart, L., Pearson, J.F., Wiggins, G.A., O'Mara, T.A., Parsons, M.T., Bcfr, Barrowdale, D., McGuffog, L., Dennis, J., Benitez, J., Slavin, T.P., Radice, P., Frost, D., Embrace, Godwin, A.K., Meindl, A., Schmutzler, R.K., Collaborators, G.S., Isaacs, C., Peshkin, B.N., Caldes, T., Hogervorst, F.B., Hebon, Lazaro, C., Jakubowska, A., Montagna, M., Investigators, K. C., Chen, X., Offit, K., Hulick, P.J., Andrulis, I.L., Lindblom, A., Nussbaum, R.L., Nathanson, K.L., Chenevix-Trench, G., Antoniou, A.C., Couch, F.J. and Spurdle, A.B. (2017). Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. Eur J Hum Genet, 25(4), 432–8.
Wang, X. and Tournier, C. (2006). Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal, 18(6), 753–60.
Webb, P.M. and Jordan, S.J. (2017). Epidemiology of epithelial ovarian cancer. Best Practice and Research, Clinical Obstetrics and Gynaecology, 41(n/a), 3–14.
Winchester, L., Yau, C., and Ragoussis, J. (2009). Comparing CNV detection methods for SNP arrays. Brief Funct Genomic Proteomic, 8(5), 353–66.
Xie, T., G, D.A., Lamb, J.R., Martin, E., Wang, K., Tejpar, S., Delorenzi, M., Bosman, F.T., Roth, A.D., Yan, P., Bougel, S., Di Narzo, A.F., Popovici, V., Budinska, E., Mao, M., Weinrich, S.L., Rejto, P.A. and Hodgson, J.G. (2012). A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS One, 7(7), e42001.
Xu, B., English, J.M., Wilsbacher, J.L., Stippec, S., Goldsmith, E.J. and Cobb, M.H. (2000). WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem, 275(22), 16795–801.
Xu, H., Jiao, Y., Yi, M., Zhao, W. and Wu, K. (2019). EYA2 correlates with clinico-pathological features of breast cancer, promotes tumor proliferation, and predicts poor survival. Frontiers in Oncology, 9(n/a), 26.
Yuan, Y., Zheng, S., Li, Q., Xiang, X., Gao, T., Ran, P., Sun, L., Huang, Q., Xie, F., Du, J. and Xiao, C. (2016). Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2. Acta Biochim Biophys Sin (Shanghai), 48(3), 220–8.
Zhang, L., Yang, N., Huang, J., Buckanovich, R., Liang, S., Barchetti, A., Vezzani, C., O'Brien-Jenkins, A., Wang, J., Ward, M. and Courreges, M. (2005). Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth.Cancer Research., 65(n/a), 925–32.
Zhou, H., Zhang, L., Vartuli, R.L., Ford, H.L. and Zhao, R. (2018). The eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol, 96(n/a), 165–70.