Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

In Silico Approaches for the Identification of Novel Inhibitors against Breast Cancer Up-Regulated Protein

(Bandar Hamad Aloufi and Ahmed Mohajja Alshammari)

Abstract

Breast cancer is a type of cancer that develops in the breast tissues. When some breast cells begin to grow abnormally, breast cancer develops. These cells grow and divide at a faster rate than healthy cells and continue to grow, generating a lump or mass. Cancer cells in the breast may spread to lymph nodes or other places of the body. The hormone estrogen encourages cancer growth when it binds to the receptor of the targeted protein. The purpose of this study is the rational screening of a 15,000 phytochemicals library against the estrogen receptor alpha protein. The library was employed for molecular docking to find the binding affinities and simulation analysis of the top-selected compounds. The top four compounds, Mangostenone E, Exiguaflavanone M, Sanggenon A, and Flaccidine were identified as direct inhibitors of estrogen receptors as evident from their high binding affinity and occupancy of specific binding sites. Mangostenone E was the leading phytochemical that showed a high docking score—15.97 (kcal/mol)—and bonding interaction at the active site of Mangostenone E. Leading phytochemicals were subjected to analysis for drug-like properties that further reinforced their validation. Potential molecules identified in this study can be considered lead drugs for the treatment of breast cancer.
KEYWORDS
Bioinformatics, docking, drug candidates, molecular dynamic simulation, phytochemicals, protein data bank

PDF

References

Alamri, M.A., Tahir ul Qamar, M., Afzal, O., Alabbas, A.B., Riadi, Y. and Alqahtani, S.M. (2021). Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. Journal of Molecular Liquids, 330(n/a), 115699. DOI: 10.1016/j.molliq.2021.115699
Ali, S. and Coombes, R.C. (2000). Estrogen receptor alpha in human breast cancer: Occurrence and significance. Journal of Mammary Gland Biology and Neoplasia, 5(3), 271–81. DOI: 10.1023/A:1009594727358 gg –g 
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000). The Protein data bank. Nucleic Acids Research, 28(1), 235–42. DOI: 10.1093/nar/28.1.235  
Blessy, J.J. and Sharmila, D.J.S. (2015). Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex. Journal of Biomolecular Structure and Dynamics, 33(5), 1126–39. DOI: 10.1080/07391102.2014.931825
Brocklehurst, P., Kujan, O., O'Malley, L., Ogden, G.R., Shepherd, S. and Glenny, A.-M. (2013). Screening programmes for the early detection and prevention of oral cancer. Cochrane Database of Systematic Reviews, n/a(11), CD004150 DOI: 10.1002/14651858.CD004150.pub4
Chen, X., Li, H., Tian, L., Li, Q., Luo, J. and Zhang, Y. (2020). Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. Journal of Computational Biology, 27(9), 1397–406. DOI: 10.1089/cmb.2019.0323
Clèries, R., Ribes, J., Esteban, L., Martinez, J.M. and Borràs, J.M. (2006). Time trends of breast cancer mortality in Spain during the period 1977–2001 and bayesian approach for projections during 2002–2016. Annals of Oncology, 17(12), 1783–91. DOI: 10.1093/annonc/mdl303
Feuer, E.J., Wun, L.-M., Boring, C.C., Flanders, W.D., Timmel, M.J. and Tong, T. (1993). The lifetime risk of developing breast cancer. JNCI: Journal of the National Cancer Institute, 85(11), 892–7. DOI: 10.1093/jnci/85.11.892
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N. Staroverov, V.N., Keith, T.A., Kobayashi, R. Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. (2016). Gaussian 16 Rev. C. 01. Wallingford, CT: Gaussian Inc. 
González, J.R., Moreno, V., Fernández, E., Izquierdo, A., Borrás, J., Gispert, R., and Grupo de Investigación sobre el Impacto del Cáncer en Cataluña (2005). Probabilidad de desarrollar y morir por cáncer en Cataluña en el período 1998-2001 ‘Probability of developing and dying of cancer in Catalonia during the period 1998-2001’. Medicina clinica [in Spanish], 124(11), 411–14. DOI: 10.1157/13072840
Joy, P.P., Thomas, J., Mathew, S. and Skaria, B.P. (2001). Medicinal Plants. In: Bose, T.K., Kabir, J., Das, P. and Joy, P.P. (eds.) Tropical Horticulture. Calcutta, India: Naya Prokash, 449–632.
Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C.D., Biankin, A.V., Neale, R.E., Tempero, M., Tuveson, D.A., Hruban, R.H. and Neoptolemos, J.P. (2016). Pancreatic cancer. Nature Reviews Disease Primers, 2(1), 1–22. DOI: 10.1038/nrdp.2016.22
Komanduri, R., Chandrasekaran, N. and Raff, L.M. (2000). MD simulation of indentation and scratching of single crystal aluminum. Wear, 240(1), 113–43. DOI: 10.1016/S0043-1648(00)00358-6
Kumar, A., Behera, P.C., Rangra, N.K., Dey, S. and Kant, K. (2018). Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors. Pharmacognosy magazine, 14(53), 124–8. DOI: 10.4103/pm.pm_62_17
Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269–88. DOI: 10.1016/0022-2836(82)90153-X
Levinthal, C., Wodak, S.J., Kahn, P. and Dadivanian, A. K. (1975). Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts. Proceedings of the National Academy of Sciences, 72(4), 1330–4. DOI: 10.1073/pnas.72.4.1330
McDonald, E.S., Clark, A.S., Tchou, J., Zhang, P. and Freedman, G. M. (2016). Clinical diagnosis and management of breast cancer. Journal of Nuclear Medicine, 57(Supplement 1), 9S–16S. DOI: 10.2967/jnumed.115.157834
Michaelson, J.S., Silverstein, M., Wyatt, J., Weber, G., Moore, R., Halpern, E., Kopans, D.B. and Hughes, K. (2002). Predicting the survival of patients with breast carcinoma using tumor size. Cancer, 95(4), 713–23. DOI: 10.1002/cncr.10742
Parkin, D.M. (2001). Global cancer statistics in the year 2000. The Lancet Oncology, 2(9), 533–43. DOI: 10.1016/S1470-2045(01)00486-7
Podlogar, B.L., Muegge, I. and Brice, L.J. (2001). Computational methods to estimate drug development parameters. Current Opinion in Drug Discovery & Amp; Development, 4(1), 102–9. 
Sadeghi, M., Miroliaei, M. and Shorakai, Z. (2020). In silico investigation of flavanone compounds' inhibitory effects on alpha-amylase enzyme and predicting their inhibitory role in diabetes progression. Journal of Fasa University of Medical Sciences, 10(4), 2786–95. 
Salemme, F.R. (1976). An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. Journal of Molecular Biology, 102(3), 563–8. DOI: 10.1016/0022-2836(76)90334-X
Segall, M.D. and Barber, C. (2014). Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discovery Today, 19(5), 688–93. DOI: 10.1016/j.drudis.2014.01.006
Skliris, G.P., Leygue, E., Watson, P.H. and Murphy, L.C. (2008). Estrogen receptor alpha negative breast cancer patients: Estrogen receptor beta as a therapeutic target. The Journal of Steroid Biochemistry and Molecular Biology, 109(1), 1–10. DOI: 10.1016/j.jsbmb.2007.12.010
Sliwoski, G., Kothiwale, S., Meiler, J. and Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–95. DOI: 10.1124/pr.112.007336
Srivastava, N., Garg, P., Srivastava, P. and Seth, P.K. (2021). A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ, 9(N/A), e11171. DOI: 10.7717/peerj.11171
Sweke, R., Wilde, F., Meyer, J., Schuld, M., Fährmann, P.K., Meynard-Piganeau, B. and Eisert, J. (2020). Stochastic gradient descent for hybrid quantum-classical optimization. Quantum, 4(n/a), 314. DOI: 10.22331/q-2020-08-31-314
Tecalco-Cruz, A.C. and Ramírez-Jarquín, J.O. (2017). Mechanisms that increase stability of estrogen receptor alpha in breast cancer. Clinical Breast Cancer, 17(1), 1–10. DOI: 10.1016/j.clbc.2016.07.015
Terstappen, G.C. and Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22(1), 23–6. DOI: 10.1016/S0165-6147(00)01584-4
Tiwari, A.K. (2004). Antioxidants: New-generation therapeutic base for treatment of polygenic disorders. Current Science, 86(8), 1092–102. 
Urruticoechea Ribate, A. (2008). Description and Pre-clinical Validation of Dynamic Molecular Determinants of Sensitivity to Aromatase Inhibitors in Breast Cancer. PhD Dissertation, Universitat de Barcelona, Barcelona, Spain.
Venkatesan, S.K., Shukla, A.K. and Dubey, V.K. (2010). Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum. Journal of Computational Chemistry, 31(13), 2463–75. DOI: 10.1002/jcc.21538
Vilar, S., Cozza, G. and Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry, 8(18), 1555–72. DOI: 10.2174/156802608786786624
Yalcin, S. (2020). Molecular docking, drug likeness, and ADMET analyses of passiflora compounds as P-glycoprotein (P-gp) inhibitor for the treatment of cancer. Current Pharmacology Reports, 6(6), 429–40. DOI: 10.1007/s40495-020-00241-6.
Zhao, Y., Deng, C., Wang, J., Xiao, J., Gatalica, Z., Recker, R.R. and Xiao, G.G. (2011). Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Research and Treatment, 127(1), 69–80. DOI: 10.1007/s10549-010-0972-2.