Scientific Journal Of King Faisal University
Basic and Applied Sciences

ع

Scientific Journal of King Faisal University / Basic and Applied Sciences

Thermal Behavior Assessment of Natural Stone Buildings in the Semi-Arid Climate

(Racha Djedouani , Lazhar Gherzouli and Hakan Elçi)

Abstract

This paper aims to assess the effects of harsh climatic conditions’ interactions with natural stone on thermal inertia properties and the thermal performance of ancient residential buildings. As the type of stone differs, its thermo-physical components differ; therefore, its interactions with environmental factors vary. For this purpose, an experimental measurement was conducted on many buildings with different orientations in a semi-arid climate and validated by a simulation performed by the “EnergyPlus 9.3” software. Results showed that the important outdoor temperature gap between day and night influences the natural stone thermos-physical properties used in construction. The stone components affected by the thermal shock effect weathering are eroded over time, then saturated with water, and affect the thermal conductivity coefficient of stone; however, this directly changes the indoor thermal comfort and performance of buildings. Additionally, the high indoor relative humidity percentage and the absence of natural ventilation have an important influence on the ambient temperature values recorded. This paper discusses the experimental measurement results compared to the simulation results.


KEYWORDS
Thermal performance, building envelope, thermal inertia, limestone, Tébessa, Algeria

PDF

References

Aste, N., Angelotti, A. and Buzzetti, M. (2009). The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy and Buildings, 41(11), 1181–7. DOI: 10.1016/j.enbuild.2009.06.005 
Boumezbeur, A., Hmaidia, H. and Belhocine, B. (2015). Limestone weathering and deterioration in the Tébessa Roman Wall NE Algeria. Engineering Geology for Society and Territory, 8(n/a) 169–74. DOI: 10.1007/978-3-319-09408-3_27
Chahwane, L. (2011). Valorisation de L'inertie Thermique Pour la Performance Energétique des Bâtiments ‘Valuation of Thermal Inertia for the Energy Performance of Buildings’. PhD Thesis, University of Grenoble, Grenoble, France. [in French]
Chuayb, M.H.M.A. (2015). Application de Quelques Notions de la Conception Bioclimatique Pour L’amélioration de la Température Interne d’un Habitat ‘Application of some Notions of Bioclimatic Design for Improving the Internal Temperature of a Habitat’. PhD Thesis, University of Saida, Saida, Algeria. [in French]
Djedouani, R., Elçi, H., Hacımustafaoğlu, R. and Gherzouli, L. (2021). Tébessa (Algeria) limestone for restoration work to Roman historical building in Tébessa. In: The Sixth International Stone Congress, Marble Izmir Fair, Izmir, Turkey. 25-28/08/2021.
Djedouani, R., Gherzouli, L. and Elçi, H. (2020). The effect of the thermal inertia on the thermal behavior of building stone wall in semi-arid climate. In: The Third International Congress on Architecture and Design, Hilton Istanbul Zeytinburnu, Istanbul, Turkey. 18-19/04/2020.
El-Darwish, I. and Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579–89. DOI: 10.1016/j.aej.2017.05.011
Evola, G., Marletta, L., Natarajan, S. and Patanè, E.M. (2017). Thermal inertia of heavyweight traditional buildings: Experimental measurements and simulated scenarios. Energy Procedia, 133(n/a), 42–52. DOI : 10.1016/j.egypro.2017.09.369
Ghedamsi, R., Settou, N., Gouareh, A., Khamouli, A., Saifi, N., Recioui, B. and Dokkar, B. (2016). Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy and Buildings, 121(n/a), 309–17. DOI: 10.1016/j.enbuild.2015.12.030
Hailu, G. (2021). Energy systems in buildings. Energy Services Fundamentals and Financing, 1(n/a), 181–209. DOI: 10.1016/B978-0-12-820592-1.00008-7
Hensen, J. L. M. (1991). On the Thermal Interaction of Building Structure and Heating and Ventilating System. PhD Thesis, University of Technology Eindhoven, Eindhoven, Netherlands.
Kaemmerlen, A. (2009). Transfert de Chaleur à Travers les Isolants Thermiques du Batiment ‘Heat Transfer through Building Thermal Insulators’. PhD Thesis, University of Henri Poincaré-Nancy 1, Nancy, France. [in French]
Khadraoui, M.A. and Sriti, L. (2018). The impact of facade materials on the thermal comfort and energy efficiency of offices buildings. Journal of Building Materials and Structures, 5(1), 55–64. DOI: 10.5281/zenodo.1285954
Košir, M. (2016). Adaptive building envelope: an integral approach to indoor environment control in buildings. In: P. Ponce, A.M. Gutiérrez, L.M. Ibarra (eds.) Automation and Control Trends. Rijeka, Croatia. DOI: 10.5772/64951
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–63. DOI: 10.1127/0941-2948/2006/0130
Nasri, F., Boumezbeur, A., and Benavente, D. (2019). Influence of the petrophysical and durability properties of carbonate rocks on the deterioration of historic constructions in Tébessa (northeastern Algeria). Bulletin of Engineering Geology and the Environment, 78(6), 3969–81. DOI: 10.1007/s10064-018-1410-7
Nguyen, S.H., Do, T.T. and Ambre, J. (2020). Study on INTOC waterproofing technology for basement of high-rise buildings. In: The fifth International Conference on Green Technology and Sustainable Development (GTSD), University of Danang, Da Nang, Vietnam, 27-28/11/ 2020.
Orosa, J.A. and Oliveira, A.C. (2012). A field study on building inertia and its effects on indoor thermal environment. Renewable Energy, 37(1), 89–96. DOI: 10.1016/j.renene.2011.06.009.
Rabouille, M. (2014). Recherche de la Performance en Simulation Thermique Dynamique: Application à la Réhabilitation des Bâtiments ‘Performance Research in Dynamic Thermal Simulation: Application to the Rehabilitation of Buildings’. PhD Thesis, University of Grenoble, Grenoble, France. [in French]
Rais, M., Boumerzoug, A. and Baranyai, B. (2021). Energy performance diagnosis for the residential building façade in Algeria. Pollack Periodica, 16(2), 136–42. DOI: 10.1556/606.2020.00204.
Sanchez, E., Rolando, A., Sant, R. and Ayuso, L. (2016). Influence of natural ventilation due to buoyancy and heat transfer in the energy efficiency of a double skin facade building. Energy for sustainable development, 33(10), 139–48. DOI: 10.1016/j.esd.2016.02.002.
Szabó-Takács, B., Farda, A., Skalák, P. and Meitner, J. (2019). Influence of Bias correction methods on simulated Köppen− Geiger climate zones in Europe. Climate, 7(2), 18. DOI: 10.3390/cli7020018.
TS EN 12372 (2013). Natural Stone Test Methods. Determination of Flexural Strength under Concentrated Load. Ankara. Turkey: Turkish Standardization Institute.
TS EN 12407 (2019). Natural Stone Test Methods - Petrographic Examination. Ankara. Turkey: Turkish Standardization Institute.
TS EN 13755 (2014). Natural Stone Test Methods Determination of Water Absorption at Atmospheric Pressure. Ankara. Turkey: Turkish Standardization Institute.
TS EN 14157 (2017). Natural Stone Test Methods Determination of the Abrasion Resistance. Ankara. Turkey: Turkish Standardization Institute.
TS EN 14579 (2006). Natural Stone Test Methods Determination of Sound Speed Propagation. Ankara. Turkey: Turkish Standardization Institute.
TS EN 1926 (2007). Natural Stone Test Methods Determination of Uniaxial Compressive Strength. Ankara. Turkey: Turkish Standardization Institute.
TS EN 1936 (2010). Natural Stone Test Methods Determination of Real Density and Apparent Density and of Total and Open Porosity. Ankara. Turkey: Turkish Standardization Institute.
Tumac, D. and Shaterpour-Mamaghani, A. (2018). Estimating the sawability of large diameter circular saws based on classification of natural stone types according to the geological origin. International Journal of Rock Mechanics and Mining Sciences, 101(n/a), 18–32. DOI: 10.1016/j.ijrmms.2017.11.014.
Verbeke, S. and Audenaert, A. (2018). Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews, 82(3), 2300–18. DOI: 10.1016/j.rser.2017.08.08.
Yam, J., Li, Y. and Zheng, Z. (2003). Nonlinear coupling between thermal mass and natural ventilation in buildings. International Journal of Heat and Mass Transfer, 46(7), 1251–64. DOI: 10.1016/S0017-9310(02)00379-4.
Yavuz, H., Altindag, R., Sarac, S., Ugur, I. and Sengun, N. (2006). Estimating the index properties of deteriorated carbonate rocks due to freeze–thaw and thermal shock weathering. International Journal of Rock Mechanics and Mining Sciences, 43(5), 767–75. DOI: 10.1016/j.ijrmms.2005.12.004.