Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

The Tensor Product of Zero-Divisor Graphs of Variation Monogenic Semigroups

(Abolape Deborah Akwu and Bana Al Subaiei)

Abstract

The tensor product of zero-divisor graphs of variation monogenic semigroups Γ(VS_Mn^1) and Γ(VS_Mm^2) is studied. The vertices(x_1^i,x_2^j) and (x_1^k,x_2^f) of the tensor product of this graph are adjacent whenever gcd(i,k)=1,i+k>n,gcd(j,f)=1 ,j+f>m. Some properties of tensor product graphs are obtained, such as girth, diameter, chromatic, clique and domination numbers. 

KEYWORDS
Variation monogenic semigroup, relatively prime, tensor product, adjacency
PDF

References

Akgunes, N., Das, K. C. and Sinan Cevik, A. (2014). Some properties on the tensor product of graphs obtained by monogenic semigroups. Applied Mathematics and Computation, 235, 352–7.
Al Subaiei, B. and Akwu, A. D. (2020). The zero-divisor graph of variation monogenic semigroups. Sci. J. King Faisal Univ., 21(2), 189–93. DOI: 10.37575/b/sci/0016
Anderson, D. F. and Badawi, A. (2017). ‘The zero-divisor graph of a commutative semigroup: A survey’. In: M. Droste, L. Fuchs, B. Goldsmith and L. Strüngmann. (eds.) Groups, Modules, and Model Theory - Surveys and Recent Developments, 23–39. Cham: Springer. DOI: 10.1007/978-3-319-51718-6_2 
Asmerom, G. A. (1998). Imbeddings of the tensor product of graphs where the second factor is a complete graph. Discrete Mathematics, 182(n/a), 13–9.
Bondy, J. A. and Murty, U. S. (1976). Graph Theory with Applications. New York: Elsevier Science Publishing Co., Inc.
Das, K. C., Akgunes, N. and Sinan Cevik, A. (2013). On a graph of monogenic semigroups. Journal of Inequalities and Applications, 2013(1), 1–13.
DeMeyer, F. R. and DeMeyer, L. (2005). The zero-divisor graphs of semigroups. J. Algebra, 283(1), 190¬–8.
DeMeyer, F. R., McKenzie, T. and Schneider, K. (2002). The zero-divisor graph of a commutative semigroups. Semigroup Forum, 65(2), 206¬–14.
Harary, F. and Trauth, Jr., C. A. (1966). Connectedness of products of two directed graphs. SIAM Journal on Applied Mathematics, 14(2), 250–4.
Lovasz, L. (1972). Normal hypergraphs and the weak perfect graph conjecture. Discrete Math, 2(3), 253–67.
Sampathkumar, E. (1972). On tensor product graphs. Journal of the Australian Mathematical Society, 20(3), 268–73.
Wright, S. E. (2007). Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Commun. Algebra, 35(6), 1987–91.