Scientific Journal Of King Faisal University
Basic and Applied Sciences

ع

Scientific Journal of King Faisal University / Basic and Applied Sciences

Study of the Electric Quadrupole Transitions in 50-51Mn Isotopes by Using F742pn and F7cdpn Interactions

(Ali Khalaf Hasan, Fatema Hameed Obeed and Azahr Nadham Rahim)

Abstract

The nuclear shell-model has been used to compute excitation levels of ground band and electric quadrupole transitions for 50-51Mn isotopes in f-shell. In the present study, f742pn and f7cdpn effective interactions have been carried out in full f-shell by using Oxbash Code. The radial wave functions of the single-particle matrix elements have been calculated in terms of the harmonic oscillator (Ho) and Skyrme20 potentials. The predicted theoretical results have been compared with the available experimental data; it has been seen that the predicted results are in agreement with the experimental data. From the current results of the calculations, many predictions of angular momentum and parities of experimental states have been made, and the energy spectra predictions of the ground band and B(E2; ↓) electric quadrupole transitions in 50-51Mn isotopes of the experimental data are not known yet. In the nuclear shell-model calculations framework, energy levels have been determined for 50-51Mn isotopes; new values of electric quadrupole transitions have been predicted in the studied results. This investigation increases the theoretical knowledge of all isotopes with respect to the energy levels and reduced transition probabilities. 

KEYWORDS
Effective charges, excitation levels, Oxbash Code, shell-model, ground band, angular momentum, and parity

PDF

References

Ali, A.H. (2018). Shell-model for study quadrupole transition rates in B2 in some neon isotopes in sd-shell with using different interactions. Journal of Astrophysics and Aerospace Technology, 6(1), 1–6. DOI: 10.4172/2329-6542.1000160. 
Bacca, S. (2016). Structure models: From shell-model to ab initio methods. The European Physical Journal Plus, 131(107), 1–27. DOI: 10.1140/epjp/i2016-16107-6.
Brown, B.A. (2001). The nuclear shell-model towards the drip lines. Progress in Particle and Nuclear Physics, 47(2), 517–99. DOI: 10.1016/S0146-6410(01)00159-4.
Brown, B.A. and Rae, W.D.M. (2014). The shell-model code NuShellX@ MSU. Nuclear Data Sheets, 120(n/a), 115–8. DOI: 10.1016/j.nds.2014.07.022.
Brown, B.A. and Rae, W.D.M. (2007). NUSHELL@MSU. MSU NSCL Report, 542(n/a), 1–29.
Brown, B.A, Etchegoyen, A., Godwin, N.S., Rae, W.D.M., Richter, W.A., Ormand, W.E., Warburton, Winfield, E.K., Zhao, L.S. and Zimmerman, C.H. (2005). Oxbash for Windows. MSU-NSCL Report, 1289(n/a), 1–32.
Caurier, E. and Nowacki, F. (1999). Present status of shell-model techniques. Acta Physica Polonica B, 30(3), 705–14.
Caurier, E., Langanke, K., Martfnez-Pinedo, G., Nowacki, E., Poves, A., Retamosa, J. and Zuker, A.P. (1999). Full 0ℏw shell-model calculation of the binding energies of the 1f7/2 nuclei. Physical Review C, 59(4), 2033. DOI: 10.1103/PhysRev C.59.2033.
Chen, J. and Singh, B. (2019). Adopted levels, gammas for 51Mn. Nuclear Data Sheets, 157(1), n/a. 
Coraggio. L., Covello, A., Gargano, A., Itaco, N., Entem, D.R., Kuo, T.T.S. and Machleidt, R. (2007). Low-momentum nucleon-nucleon interactions and shell-model Calculations. Physical Review C, 75(24311), 1–8. DOI: 10.1103/PhysRevC.75.024311.
Gambhir, Y.K., Haq, S.,and. Suri, J.K. (1982). Number conserving shell-model for even Ca, Ti, Cr, and Fe isotopes. Physical ReviewC, 25(1), 630–49. DOI: 10.1103/ Phys Rev C.25.630.
Gargano, A., Coraggio, L., Covello, A. and Itaco, N. (2014). Realistic shell-model calculations and exotic nuclei. In: Journal of Physics Conference on Theoretical Nuclear Physics in Italy, Cortona, Italy, 29-31/10/2103. 
Hasan, A.K. (2018). Shell-model calculations for 18,19,20O isotopes by using usda and usdb interactions. Ukrainian Journal of Physics, 63(3), 189–95. DOI: 10.15407 /ujpe63.3.189.
Hasan, A.K. and Obeed, F.H. (2017). Energy levels and reduced transition probabilities of 18-20F isotopes using USDA and W Hamiltonians. International Journal of Physical Sciences, 12(10), 118 –29. DOI: 10.5897/IJPS2017.4630.
Honma, M., Brown, B.A., Mizusaki, T. and Otsuka, T. (2002). Full pf –shell calculations with a new effective. Nuclear Physics A, 704(n/a), 134c–43c. DOI: 10.1016/S0375-9474(02)00774-1.
Jimin, W. and Xiaolong, H. (2017). Adopted Levels, gammas for 51Mn. Nuclear Data Sheets, 144(1), n/a. 
Kaneko, K., Sun, Y., Hasegawa, M. and Mizusaki, T. (2008). Shell-model study of single-particle and collective structure in neutron-rich Cr-isotopes. Physical Review C, 78(064312), 1–9. DOI: 10.1103/PhysRevC.78.064312.
Lawson, R.D. (1980). Theory of the Nuclear Shell Model. United States: Oxford University Press.
Muto, K., Oda, T. and, H. (1978). Shell-model study of f7//2 shell nuclei in pure f n7//2 Configuration. Progress of Theoretical Physics, 60(5), 1350–65. DOI: 10.1143 / ptp .60. 1350.
Pandya, S.P. and Singh, B.P. (1974). Effective interactions and charges in58Ni. Pramana Journal of Physics, 3(2), 61–74. DOI: 10.1007/BF02847115.
Radhi, R.A. and Bouchebak, A. (2003). Microscopic calculations of C2 and C4 form factors in sd-shell nuclei. Nuclear Physics A, 716(n/a), 87–99. DOI:10.1016 /S037 5- 9474 (02)01335-0.
Saaymant, R. and Irvine, J. M. (1976). Shell-model calculations for the 0 f7/2 proton-shell nuclei. Journal of Physics G: Nuclear Physics, 2(5), 309–20. DOI: 10.1088 /0305-4616 /2 /5/007.
Srivastava, P.C. and Mehrotra, I. (2010). Large-scale shell-model calculations for odd-odd 58–62Mn Isotopes. The European Physical Journal A, 45(n/a), 185–92. DOI: 10.1140/ epja /i2010- 10995 -9.
Volya, A. (2009). Manifestation of three-body forces in f7/2-shell nuclei. Europhysics Letters, 86(5), 1–6. DOI: 10.1209/0295-5075/86/52001.
Walker, B.F. (1995). The chi-square test: An introduction. Comsig Review, 4(3), 61–4.