Scientific Journal Of King Faisal University
Basic and Applied Sciences

ع

Scientific Journal of King Faisal University / Basic and Applied Sciences

Micrografting Compatibility Between Two Almond Cultivars and Four Wild Species

(Wafaa Mohamed Koaym , Mohamed Abdul Razzaq Battha and Mhasen Mohamed Taher Twaklna )

Abstract

Micropropagation and micrografting techniques are important methods used to obtain high quality plants. This research aimed to investigate the effect of wild almond species (Prunus communis, P. orientalis, P. korschinskii, and P. arabica) on the success of micrografting almond cultivars (Prunus dulcis cvs. Shami Furk and Dafadii)and determine  which combination of growth regulators lead to the highest rate of multiplication in  micrografted cultivars. The shoot tips were grafted onto the rooted rootstocks by inverted T-budding. The results indicated that Murashige and Skoog (MS) medium, supplemented with 1 mg/l benzyl adenine (BA), 0.1 mg/l indole-3-butyric acid (IBA) and 0.2mg/l gibberellic acid (GA3), achieved the highest shoot multiplication with an average of 5.31 and 3.67 shoots per explant and an average of 6.23cm and 4.98cm shoot length in cultivars Shami Furk and Dafadii, respectively. The highest grafting success rates were 80% and 74.26% obtained from Shami Furk/P. arabica and Dafadii/P. arabica combinations, respectively, while the lowest success rate was 50.63% with the Dafadii/P. orientalis combination. The liquid MS medium supplemented with 0.5 mg/l BA + 0.1 mg/l IBA achieved the highest micrografting success and scion shoot length. This research can be used to improve almond cultivation.

KEYWORDS
Almond, compatibility, growth regulators, microscions, rootstocks, tissue culture

PDF

References

Ahrens, S., Venkatachalam, M., Mistry, A., Lapsley, K. and Sathe, S. (2005). Almond (Prunus dulcis L.) protein quality. Plant Foods for Human Nutrition, 60(3), 123–8. 
Akbas, F.,  Isikalan, C., Namli, S. and AK, B.E. (2009). Effect of plant growth regulators on in vitro shoot multiplication of Amygdalus communis L.cv.Yaltsinki. African Journal of Biotechnology, 8(22), 6168–74.
 Al-Ghzawi, A.A, Rawashdehb, I.M. and Al-Tawaha, A. (2009). Genetic relatedness among wild and cultivated almond genotypes using randomly amplified polymorphic DNA (RAPD) markers in Jordan. Jordan Journal of Biological Sciences, 2(2), 89–96. 
Antonopoulou, Ch., Dimassi, K., Therios, I., Chatzissavvidis, Ch. and Tsirakoglou, V. (2005). Inhibitory effects of riboflavin (Vitamin B2) on the in vitro rooting and nutrient concentration of explants of peach rootstock GF 677 (Prunus amygdalus * P. persica). Sci. Hort. 5(106), 268–72.
Bennett, L.K. and Davies, F.T. (1986). In vitro propagation of Quercus shumardii seedlings. Horti Science, 21(4), 1045–7.
Brison, M., de Boucaud, M.T. and Dosba, F. (1995). Cryopreservation of in vitro grown shoot tips of two interspecific Prunus rootstocks. Plant Sci, 105(2), 235–42.
Channuntapipat, C. (2002). Almond Improvement via Micropropagation, Cryopreservation, and S-allele Identification. PhD Thesis, Adelaide University, Adelaide, Australia.
Channuntapipat, C., Sedgley, M. and Collins, G. (2003). Micrografting of almond cultivars Nonpareil and Ne Plus Ultra and the hybrid rootstock Titan x Nemaguard. Sci. Hort, 98(4), 473–84.
Dobranszki, J. and Teixeira da Silva, J.A. (2010). Micropropagation of apple – A review. Biotechnology Advances, 28(4), 462–88.
George, E.F., Michael, H. and de Klerk, G.J. (2007). Plant growth regulators II: Cytokinins, their analogues and antagonists. In: Edwin, G, Hall, M., and Greet-Jan, de Klerk (eds.) Plant Propagation by Tissue Culture, Volume1. The background. 3rd edition. Switzerland: Springer.
Gradziel, T.M., Martinez-Gomez, P., Dicenta F. and Kesterv, D.E. (2001). The utilization of related Prunus species for almond variety improvement. Journal American Pomological Society, 55(2), 100–8.
Guo, Y., Qin, G., Gu, H. and Qu, L. (2009).  Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. The Plant Cell, 21(11), 3518–34.
Gürel, S. and  Gülen, Y. (1998). The effects of different sucrose, agar and pH levels on in vitro shoot production of almond (Amygdalus communis L.). Turkish Journal of Botany, 22(n/a), 363–73.
Hartmann, H.T., Kester, D.E., Davies, F.T.Jr. and Geneve, R.G. (1997). Plant Propagation, Principles and Practices. Englewood Cliffs, New Jersey: Prentice-Hall International Inc.
Hu, R. and Mis, G. (2015). Micrografting of fruit crops-A review. Journal of Horticulture 2(3), 151. DOI:10.4172/2376-0354.1000151.
Hussain, G., Wani, M.S., Mir, M.A., Rather, Z.A. and Bhat, K.M. (2014). Micrografting for fruit crop improvement. African Journal of Biotechnology, 13(25), 2474–83.
Isıkalan, Ç., Adıyaman Akbaş F., Namlı, S., Tilkat, E. and  Başaran, D. (2008). In vitro micropropagation of almond (Amygdalus communis L. cv. Nonpareil). African Journal of Biotechnology, 7(12), 1875–80.
Isıkalan, C., Namli, S., Akbas, F. and Ak, B.E. (2011). Micrografting of almond (Amygdalus communis) cultivar ‘Nonpareil’. AJCS, 5(1), 61–5.
Izadi, Z., Zarei, H. and Alizadeh, M. (2014). Effect of time, cultivar and rootstock on success of rose propagation through stenting technique. Am J Plant Sci, 5(11), 1644.
Jain, S.M. and Häggman, H.M. (2007). Protocols for Micropropagation of Woody Trees and Fruits. The Netherland: Springer-Verlag.
Kester, D.E. and Gradziel, T.M. (1996). Almond (Prunus). In: J. Janick and J.N. Moore (eds.) Fruit Breeding. Nuts. New York, NY: John Wiley & Sons. 
Kodad, S., Melhaoui, R., Boukharta, M., Addi, M., Serghini, H., Elamrani, A., Abid, M. and Mihamou, A. (2020). Micropropagation of selected almond genotypes (Prunus dulcis Mill.) cultivated in Eastern Morocco based on their pomological studies. In: 25th National Symposium for Applied Biological Sciences (NSABS), Gembloux, Belgium, 31/01/2020. 
Ladizinsky, G. (1999). On the origin of almond. Genetic Resources and Crop Evolution, 46(n/a), 143–7.
Martins, M., Sarmento, D. and Oliveria, MM. (2004). Genetic stability of micro propagated almond plantlets, as assessed by RAPD and IAAR markers. Plant Cell Reproduction, 23(7), 492–96. DOI: 10.1007/s00299-004-0870-3.  
Miguelez-Sierra, Y., Hernandez-Rodriguez, A., Acebo-Guerrero, Y., Baucher, M. and El Jaziri, M. (2016). In vitro micrografting of apical and axillary buds of cacao. J Hortic Sci Biotech, 92(1), 1–6. 
Mortazavi, M. (1986). Problems of grafting of cultivated almond on wild almond. Iranian Scientific and Specific Journal in Agriculture “Zeitun”, 71(n/a), 15–21.
Murashige, T. (1974). Plant propagation through tissue culture. Annual Review of plant Physiology, 25(n/a), 135–66.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiologia Plantarum, 15(n/a), 473–97.
Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R.,  Astot, C., Dolzel, K. and Sandberg, S. (2004). Auxin regulation of cytokinins biosynthesis in the Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA, 101(21), 8039–44.
Rahemi, A., Reza Fatahi, R., Ali Ebadi, A., Taghavi, T., Hassani, D., Gradziel, T. and José Chaparro. (2010). Genetic variation of S-alleles in wild almonds and their related Prunus species. AJCS, 4(8), 648–59.
Richardson, F.V.M., Mac Ant Saoir, S. and Harvey, BMR. (1996). A study of the graft union in vitro micrografted apple. Plant Growth Regulation, 20(n/a), 17–23.
Sorkheh, K., Shiran, B., Rouhi, V., Asadi, E., Jahanbazi, H., Moradi, H., Gradziel,   TM. and Martı´nez-Go´mez, P. (2009). Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genetic Resources and Crop Evolution, 56(n/a), 947–61.
Wu, H.C., Du Toit, E.S. and Reinhardt, C.F. (2007). Micrografting of protea cynaroides.  Plant Cell Tissue and Organ Culture, 89(1), 23–8.