Scientific Journal Of King Faisal University: Basic and Applied Sciences

ع

Scientific Journal of King Faisal University: Basic and Applied Science

Assessing Degree of Desertification Using Tasselled Cap Transformation and Spectral Indicators Techniques: Iraq

(Reem Tuama Yousuf and Ebtihal T AL-Khakani)

Abstract

Remote sensing technology is an advanced approach for monitoring desertification by extracting a variety of spectral indicators derived from satellite images. This research aims to monitor and assess the degree of desertification in An-Najaf City using Landsat 8 Operational Land Imager (OLI) images obtained on 7 August 2019. Three tasselled cap transformation (TCT) indices were employed: tasselled cap brightness (TCB), tasselled cap greenness (TCG), and tasselled cap wetness (TCW), in addition to the modified soil adjusted vegetation index (MSAVI), topsoil grain size index (GSI), and land surface albedo (albedo). Linear regression was performed on TCB-TCG, TCB-TCW, albedo-MSAVI, and GSI-MSAVI to select the group with the highest negative correlation. The two highest negative correlations were for the TCB-TCW model of coefficient r2=0.8894 and TCB-TCG of r2=0.8519. Based on these two models, the extracted degree of desertification index (DDI) showed a high overall accuracy of 88.14% for the TCB-TCW model, and 91.44% for the TCB-TCG model. The results of these two models demonstrate their effectiveness in evaluating the degree of desertification. In general, this study provides a simple, easy and effective method to monitor desertification levels in semi-arid lands.

KEYWORDS
Remote sensing, desertification index, Landsat 8, albedo, modified soil-adjusted vegetation 

PDF

References

Al-Bakri, J., Saoub, H., Nickling, W., Suleiman, A., Salahat, M., Khresat, S. and Kandakj, T. (2012). Remote sensing indices for monitoring land degradation in a semiarid to arid basin in Jordan. In: Proc. SPIE 8538, Earth Resources and Environmental Remote Sensing/GIS Applications III, 853810, Edinburgh, United Kingdom, 25/10/2012. doi: 10.1117/12.974333.
AL-Khakani, E.T., Al-Janabi, W.F., Yousif, S.R. and Al-Kazaali, H.M. (2018). Using Landsat 8 OLI data to predict and mapping soil salinity for part of An-Najaf governorate. Ecology, Environment and Conservation, 24(2), 572–8.
AL-Khakani, E.T. and Yousif, S.R. (2019). An assessment of soil salinity and vegetation cover changes for a part of An-Najaf governorate using remote sensing data. In: The 1st International Scientific Conference on Pure Science, Al-Qadisiyah University, Al-Qadisiyah, Iraq, 23-24/1/ 2019. 
An, H., Tang, Z., Keesstra, S. and Shangguan, Z. (2019). Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports, 9(9422), 1–9. DOI: 10.1038/s41598-019-45927-0. 
Balcik, F.B. and Ergene, E.M. (2016). Determining the impacts of land cover/use categories on land surface temperature using Landsat 8-OLI. In: XXIII ISPRS Congress, Prague, Czech Republic, 12–19/07/2016.  DOI: 10.5194/isprsarchives-XLI-B8-251-2016.
Baraldi, A., Puzzolo, V., Blonda, P., Bruzzone, L. and Tarantino C. (2006). Automatic spectral rule-based preliminary mapping of calibrated Landsat TM and ETM+ images. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2563–86.
Becerril-Pina, R., Diaz-Delgado, C., Mastachi-Loza, C.A. and González-Sosa, E. (2016).  Integration of remote sensing techniques for monitoring desertification in Mexico. Human and Ecological Risk Assessment: an International Journal, 22(6), 1323–40. DOI 10.1080/10807039.2016.1169914. 
Briassoulis, H. (2019). Combating land degradation and desertification: The land-use planning quandary. Land, 8(27), 1–26. DOI: 10.3390/land8020027.
Crist, E.P. and Kauth, R.J. (1986). The tasseled cap de-mystified. Photogrammetric Engineering and Remote Sensing, 52(1), 81–6.
Guangyin, H.U., Zhibao, D., and Junfeng, L.U. (2015). The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai–Tibet Plateau. Aeolian Research, 19(n/a), 275–81. DOI: 10.1016/j.aeolia.2015.02.002. 
Cui, G., Lee, W.K., Kwak, D. A., Choi, S., Park T. and Lee, J. (2011). Desertification monitoring by LANDSAT TM satellite imagery. Forest Science and Technology, 7(3), 110–6. DOI: 10.1080/21580103.2011.594607.
Guo, Q., Fu, B., Shi, P., Cudahy, T., Zhang, J. and Xu, H. (2017). Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos Plateau, China. Remote Sensing, 9(525), 1–20. DOI: 10.3390/rs9060525.
Huang, C., Wylie, B., Yang, L., Homer, C. and Zylstra, G. (2002). Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23(8), 1741–8. DOI: 10.1080/01431160110106113. 
Kauth, R.J. and Thomas, G.S. )1976(. The tasselled cap – a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat, In: Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University of West Lafayette, Indiana, 29/06–1/07/1976.
Lamqadem, A.A., Saber, H. and Pradhan, B. (2018a). Quantitative assessment of desertification in an arid oasis using remote sensing data and spectral index techniques. Remote Sensing, 10(1862), 1–19.  DOI:10.3390/rs10121862. 
Lamqadem, A.A., Pradhan. B., Saber, H. and Rahimi, A. (2018b). Desertification sensitivity analysis using MEDALUS model and GIS: A case study of the oases of middle Draa Valley, Morocco. Sensors, 18(7), 1–19.  DOI: 10.3390/s18072230.
Liang, S.L. (2001). Narrowband to broadband conversions of land surface albedo I: Algorithm. Remote Sensing Environment, 76(2), 213–38. DOI: 10.1016/S0034-4257(00)00205-4. 
Li, B., Ti, C., Zhao, Y. and Yan, X. (2016). Estimating soil moisture with Landsat data and its application in extracting the spatial distribution of winter flooded paddies. Remote Sensing, 8(38), 1–18. DOI: 10.3390/rs8010038.
Li, S. and Chen, X. (2014) A new bare-soil index for rapid mapping developing areas using Landsat 8 data. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Suzhou, China, 14–16/5/2014. DOI: 10.5194/isprsarchives-XL-4-139- 2014.
Ma, Z., Xie, Y., Jiao, J., li, L. and Wang, X. (2011). The construction and application of an Albedo-NDVI based desertification monitoring model. Procedia Environmental Sciences, 10(n/a), 2029–35.
Mfondoum, A.H.N., Etouna, J., Nongsi, B. K., MvogoMoto. F.A. and Deussieu, F. G. N. (2016). Assessment of land degradation status and its impact in arid and semi-arid areas by correlating spectral and principal component analysis Neo-bands. International Journal of Advanced Remote Sensing and GIS, 5(2), 1539–60.
Pandey, P. Ch., Rani, M., Srivastava, P.K., Sharma, L.K. and Nathawat, M.S. (2013). Land degradation severity assessment with sand encroachment in an ecologically fragile arid environment: A geospatial perspective. QScience Connect, 43(n/a), 1–17. DOI: 10.5339/connect.2013.43. 
Perry, C. J. and Lautenschlager, L.F. (1984). Functional equivalence of spectral vegetation indices. Remote Sensing of Environment, 14(1-3),
169–82.
Röder, A. and Hill, J. (2008). Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in northern Greece. Remote Sens Environ, 112(6), 2863–75.
Samarawickrama, U., Piyaratne1, D. and Ranagalage, M. (2017). Relationship between NDVI with tasseled cap indices: A remote sensing-based analysis. International Journal of Innovative Research in Technology, 3(12), 13–9. 
UNCCD. (1994). United Nations Convention to Combat Desertification in those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa. Paris, France, 19/06/1994. 
Verstraete, M.M. and Pinty, B. (1996). Designing optimal spectral indexes for remote sensing applications. Remote Sensing of Environment, 34(5), 1254–65. 
Wang, G.J. and Zhang, J.C. (2007). Analysis of grassland desertification due to coal mining based on remote sensing - An example from huolinhe open-cast coal mine. Journal of China University of Mining and Technology, 10(6), 917–25.
Wei, H., Wang, J., Cheng, K., Li, G., Ochir A., Davaasuren, D. and Chonokhuu, S. (2018). Desertification information extraction based on feature space combinations on the Mongolian plateau. Remote Sensing, 10(10), 1614.  DOI: 10.3390/rs10101614. 
Wu, Z., Lel, Sh., Bian, Z., Huang, J. and Zhang, Y. (2019). Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region. Environmental Earth Sciences, 78(232), 1–13. DOI: 10.1007/s12665-019-8111-9.
Xiao, J., Shen, Y., Tateishi, R. and Bayaer, W. (2006). Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12), 2411–22. DOI: 10.1080/01431160600554363.
Xu, D., Kang, X., Qiu, D., Zhuang, D. and Pan, J. (2009). Quantitative assessment of desertification using Landsat data on a regional scale – A case study in the Ordos Plateau, China. Sensors, 9(3), 1738–53. DOI: 10.3390/s90301738.
Xu, D. and Ding, X. (2018). Assessing the impact of desertification dynamics on regional ecosystem service value in North China from 1981 to 2010. Ecosystem Services, 30(n/a), 172–80.
DOI: 10.1016/j.ecoser.2018.03.002.
Zanchetta, A. and Bitelli, G. (2017). A combined change detection procedure to study desertification using open source tools. Open Geospatial Data, Software and Standards, 2(10), 1–12. DOI: 10.1186/s40965-017-0023-6.